scholarly journals A new Fe-C porous filter material from dredged sediment: preparation, characterization, and its application

Author(s):  
Shuyi Chu ◽  
Qian Qu ◽  
Keke Pan ◽  
Yunjie Xu ◽  
Jibo Xiao
2021 ◽  
Author(s):  
Shuyi Chu ◽  
Qian Qu ◽  
Keke Pan ◽  
Yunjie Xu ◽  
Jibo Xiao

Abstract A new Fe-C porous filter material was prepared with dredged sediment of river as raw material. The orthogonal test L9(34) and component ratio experiment of raw material were conducted to investigate the optimum technological condition. Further, the filter obtained was characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive X-ray spectroscope (EDS), and X-ray diffraction (XRD). Results showed that the optimal technological condition was sludge: straw: starch: iron powder: foam: iron powder 74.5∶10∶7.5∶3∶5, preheating temperature 280 ℃, preheating 15 min, sintering temperature 1080 ℃, and sintering 11 min. The BET surface area of the filter was 3.32 m2 g− 1, and average pore size was 10.05 nm. Phase composition mainly included SiO2, Fe3O4, Fe2O3 and muscovite (KAl2(Si3Al)O10(OH)2). Average effluent concentrations of total phosphorus (TP), total organic carbon (TOC), and total nitrogen (TN) of the biofilter system filled with the filter obtained were decreased to 0.08, 3.43, and 3.76 mg L− 1, separately, at hydraulic retention time 4 h. Thus, the filter prepared with dredged sediment of rive as raw material is an alternative material for polluted river water purification.


1984 ◽  
Vol 23 (3) ◽  
pp. 211-214
Author(s):  
L. E. Lunin ◽  
V. T. Bondar' ◽  
V. S. Pugin ◽  
P. A. Kornienko ◽  
N. P. Pavlenko

2021 ◽  
Author(s):  
Andrea Watzinger ◽  
Melanie Hager ◽  
Thomas Reichenauer ◽  
Gerhard Soja ◽  
Paul Kinner

AbstractMaintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane. Both hydrocarbon compounds hexadecane and decane were biodegraded. The mineralization rate of hexadecane was higher in the sandy filter material (3.6 µg CO2 g−1 day−1) than in the expanded clay (1.0 µg CO2 g−1 day−1). The microbial community of the constructed wetland microcosms was dominated by Gram negative bacteria and fungi and was specific for the different filter materials while hexadecane was primarily anabolized by bacteria. Adsorption / desorption of petroleum hydrocarbons in expanded clay was observed, which might not hinder but delay biodegradation. Very few cases of hydrogen isotope fractionation were recorded in expanded clay and sand & biochar filters during decane biodegradation. In sand filters, decane was biodegraded more slowly and hydrogen isotope fractionation was visible. Still, the range of observed apparent kinetic hydrogen isotope effects (AKIEH = 1.072–1.500) and apparent decane biodegradation rates (k = − 0.017 to − 0.067 day−1) of the sand filter were low. To conclude, low biodegradation rates, small hydrogen isotope fractionation, zero order mineralization kinetics and lack of microbial biomass growth indicated that mass transfer controlled biodegradation.


2021 ◽  
Author(s):  
Boris S. Maryshev ◽  
Lyudmila S. Klimenko
Keyword(s):  

Author(s):  
Roberto Bravo Cardenas ◽  
Phuong Ngac ◽  
Clifford Watson ◽  
Liza Valentin-Blasini

Abstract Solanesol, a naturally occurring constituent of tobacco, has been utilized as a good marker for environmental tobacco smoke particulate and as a noninvasive predictor of mainstream cigarette smoke tar and nicotine intake under naturalistic smoking conditions. A fast and accurate method for measuring free solanesol to assess tobacco smoke exposure is highly desirable. We have developed and validated a new environmentally friendly, high-throughput method for measuring solanesol content in discarded cigarette filter butts. The solanesol deposited in the used filters can be correlated with mainstream smoke deliveries of nicotine and total particle matter to estimate constituent delivery to smokers. A portion of filter material is removed from cigarette butts after machine smoking, spiked with internal standard solution, extracted and quantitatively analyzed using reverse-phase liquid chromatography coupled to a triple-quadrupole mass spectrometer. The new method incorporates a 48-well plate format for automated sample preparation that reduces sample preparation time and solvent use and increases sample throughput 10-fold compared to our previous method. Accuracy and precision were evaluated by spiking known amounts of solanesol on both clean and smoked cigarette butts. Recoveries exceeded 93% at both low and high spiking levels. Linear solanesol calibration curves ranged from 1.9 to 367 µg/butt with a 0.05 µg/butt limit of detection.


2021 ◽  
Vol 11 (11) ◽  
pp. 5281
Author(s):  
Marcin Spychała ◽  
Tadeusz Nawrot ◽  
Radosław Matz

The aim of the study was to verify two morphological forms (“angel hair” and “scraps”) of xylit as a trickling filter material. The study was carried out on two types of polluted media: septic tank effluent (STE) and seminatural greywater (GW). The basic wastewater quality indicators, namely, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), ammonium nitrogen (NNH4), and total phosphorus (Ptot) were used as the indicators of treatment efficiency. Filtering columns filled with the investigated material acted as conventional trickling filters at a hydraulic load of 376–472 cm3/d during the preliminary stage, 198–245 cm3/d during stage I, and 184–223 cm3/d during stage II. The removal efficiency of the two morphological forms of xylit did not differ significantly. The average efficiencies of treatment were as follows: for COD, over 70, 80, and 85% for preliminary stage, stage I and stage II, respectively; for BOD5, 77–79% (preliminary stage); for TSS, 42% and 70% during the preliminary stage, and 88, 91, and 65% during stage I; for NNH4, 97–99% for stage I and 36–49% for stage II; for Ptot, 51–54% for stage I and 52–56% for stage II. The study demonstrated that xylit was a material highly effective in wastewater quality indicators removal, even during the initial period of its use.


Sign in / Sign up

Export Citation Format

Share Document