scholarly journals Simultaneous biodegradation of harmful Cylindrospermopsis raciborskii and cylindrospermopsin toxin in batch culture by single Bacillus strain

Author(s):  
Zakaria Mohamed ◽  
Saad Alamri ◽  
Mohamed Hashem
2005 ◽  
Vol 41 (3) ◽  
pp. 153-158
Author(s):  
NAOSHI FUJIMOTO ◽  
SAYAKA KONNO ◽  
YUKI YOSHINO ◽  
AKIHIRO OHNISHI ◽  
MASAHARU SUZUKI ◽  
...  

2001 ◽  
Vol 16 (6) ◽  
pp. 460-467 ◽  
Author(s):  
Peter R. Hawkins ◽  
Elizabeth Putt ◽  
Ian Falconer ◽  
Andrew Humpage

1992 ◽  
Vol 27 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Sonia Paulino Mattos ◽  
Irene Guimarães Altafin ◽  
Hélio José de Freitas ◽  
Cristine Gobbato Brandão Cavalcanti ◽  
Vera Regina Estuqui Alves

Abstract Built in 1959, Lake Paranoá, in Brasilia, Brazil, has been undergoing an accelerated process of nutrient enrichment, due to inputs of inadequately treated raw sewage, generated by a population of 600,000 inhabitants. Consequently, it shows high nutrient content (40 µg/L of total phosphorus and 1800 µg/L of total nitrogen), low transparency (0.65 m) and high levels of chlorophyll a (65 µg/L), represented mainly by Cylindrospermopsis raciborskii and sporadic bloom of Microcystis aeruginosa, which is being combatted with copper sulphate. With the absence of seasonality and a vertical distribution which is not very evident, the horizontal pattern assumes great importance in this reservoir, in which five compartments stand out. Based on this segmentation and on the identification of the total phosphorus parameter as the limiting factor for algal growth, mathematical models were developed which demonstrate the need for advanced treatment of all the sewage produced in its drainage basin. With this, it is expected that a process of restoration will be initiated, with a decline in total phosphorus concentration to readings below 25 µg/L. Additional measures are proposed to accelerate this process.


2000 ◽  
Vol 42 (12) ◽  
pp. 149-154 ◽  
Author(s):  
M. Okada ◽  
H. Morinaga ◽  
W. Nishijima

Effects of PAC on bacterial activity were evaluated by sequencing batch cultures (20 hours each) of E.coli K-12 on synthetic medium containing glucose as a sole carbon source. Four suspended sequencing batch culture systems were operated; CP: cultures supplemented with PAC, CR: cultures with removal of metabolites by PAC at the end of each batch culture, CD: cultures supplemented with PAC in dialysis tubing to separate from E.coli, and CC: cultures without PAC (control). The supernatant of each batch culture was filtered through a membrane filter (0.2 μm) and was mixed with the same volume of fresh medium to be used as the medium for the next batch culture. The sequencing batch cultures were repeated three times for all the systems. The bacterial growth in CC was inhibited with the increase in the number of batch cultures. Although a significant amount of metabolites was accumulated in the 3rd batch culture of CC, little accumulation was noted in the 3rd batch culture of CP. No growth inhibition was noted in CP for all the batch cultures. The little differences in the bacterial yield and metabolite accumulation between CR and CD suggested that adsorption/desorption of metabolites with PAC did not play a major role in bacterial growth. PAC addition may partly stimulate the growth by the removal of growth inhibiting metabolites. However, the fact that CP showed higher yield than CR and CD indicated that the contact between bacteria and PAC plays a significant role in the growth of bacteria.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rianne C. Prins ◽  
Sonja Billerbeck

Abstract Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1831
Author(s):  
Natalia Herrera ◽  
Fernando Echeverri

Although several theories have been postulated to explain cyanobacterial blooms, their biochemical origin has not yet been found. In this work, we explore the existence of bacterial communication, called quorum sensing, in Microcystis aeruginosa and Cylindrospermopsis raciborskii. Thus, the application of several known acylhomoserine lactones to cultures of both cyanobacteria causes profound metabolic. At 72 h post-application, some of them produced substantial increases in cell proliferation, while others were inhibitors. There was a correlation with colony-forming activity for most of them. According to ELISA analysis, the microcystin levels were increased with some lactones. However, there was a clear difference between M. aeruginosa and C. raciborskii culture since, in the first one, there was an inducing effect on cell proliferation, while in C. raciborskii, the effects were minor. Besides, there were compound inhibitors and inducers of microcystins production in M. aeruginosa, but almost all compounds were only inducers of saxitoxin production in C. raciborskii. Moreover, each lactone appears to be involved in a specific quorum sensing process. From these results, the formation of cyanobacterial blooms in dams and reservoirs could be explained since lactones may come from cyanobacteria and other sources as bacterial microflora-associated or exogenous compounds structurally unrelated to lactones, such as drugs, industrial effluents, and agrochemicals.


Sign in / Sign up

Export Citation Format

Share Document