scholarly journals Feasibility study of fluorescent lamp waste recycling by thermal desorption

Author(s):  
José María Esbrí ◽  
Sofía Rivera ◽  
José Tejero ◽  
Pablo León Higueras

AbstractThe proposed Minamata Convention ban on the use of fluorescent lamps at the end of 2020, with a consequent reduction in mercury (Hg) light products, is expected to produce large amounts of discarded fluorescent bulbs. In this context, the most effective recycling options are a thermal mercury recovery system and/or aqueous solution leaching (lixiviation) to recover rare earth elements (REEs). Due to the heterogeneous nature of these wastes, a complete characterization of Hg compounds in addition to a determination of their desorption temperatures is required for their recycling. The objective of this study is to assess the feasibility of a fast cost-effective thermal characterization to ameliorate recycling treatments. A pyrolysis heating system with a heat ramping capability combined with atomic absorption spectrometry makes it possible to obtain residue data with regard to the temperature ranges needed to achieve total Hg desorption. The major drawback of these heat treatments has been the amount of Hg absorbed from the residue by the glass matrices, ranging from 23.4 to 39.1% in the samples studied. Meanwhile, it has been estimated that 70% of Hg is recovered at a temperature of 437 °C.

2018 ◽  
Vol 51 (4) ◽  
pp. 291-336 ◽  
Author(s):  
Antimo Graziano ◽  
Shaffiq Jaffer ◽  
Mohini Sain

Blends of polyethylene (PE) and polypropylene (PP) have always been the subject of intense reasearch for encouraging polymer waste recycling while producing new materials for specific applications in a sustainable way. However, being thermodynamically immiscible, these polyolefins form a binary system usually exhibiting lower performances compared with those of the homopolymers. Many studies have been carried out to better understand the PE/PP blend compatibilization for developing a high-performance and cost-effective product. Both nonreactive and reactive compatibilization promote the brittle to ductile transition for a PE/PP blend. However, the final product usually does not meet the requirements for high demanding commercial applications. Therefore, further PE/PP modification with a reinforcing filler, being either synthetic or natural, proved to be a good method for manufacturing high-performance reinforcend polymer blend composites, with superior and tailored properties. This review summarizes the recent progress in compatibilization techniques applied for enhancing the interfacial adhesion between PE and PP. Moreover, future perspectives on better understanding the influence of themodynamics on PE/PP synergy are discussed to introduce more effective compatibilization strategies, which will allow this blend to be used for innovative industrial applications.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 611
Author(s):  
Cecilia Ciacci ◽  
Neri Banti ◽  
Vincenzo Di Naso ◽  
Frida Bazzocchi

In Italy in 2020, only 15.5% of school building heritage was retrofitted from an energy and environmental point of view. In this paper, the cost-optimal method was applied to two different school buildings belonging to the same Italian cold climate zone but characterized by different structural and technological solutions. The research aims at defining the cost-effective redevelopment solution among several ones proposed to apply to this building type. At the same time, this paper provides a critical analysis of the methodology applied, highlighting deficiencies related to a not proper evaluation of environmentally friendly retrofitting measures. In a cost-effective context, the main results show that the intervention on the heating system is more convenient than the retrofitting of the envelope. The energy saving is equal to about 35% for both considered schools. Among the different proposed requalification configurations, the adoption of PV (photovoltaic) electric generation is included. In this regard, an optimization procedure was implemented in a generative design environment to maximize energy production with reference to different design parameters. As a result, a solution with south oriented PV modules with a tilt angle of 42° and arranged in 0.7 m spaced rows proved to be the most effective.


2013 ◽  
Vol 7 (4) ◽  
pp. 28-33
Author(s):  
Monika Pawlita

Background: The methods of heating houses with system components determine the energy-saving systems. Energy-saving solutions allow to maintain comfortable conditions in the house, while minimizing the cost associated with its operation and at the same time helping to protect natural environment. The examples of such solutions include condensing boilers, heat pumps and solar collectors.Material and methods: The object of the analysis in this paper is typical single-family house occupying the area of 150 m². The comparison of analyzed heating system for a single-family house, including modern energy sources, allows the assessment of the most cost-effective method of heating. Results: Choosing rational method of heating for a single-family house is dictated mainly by economic reasons. The efficiency of the heating sources is also very important. In addition, an important factor is a heating period, which depends on the weather conditions in a given year.Conclusions: The costs of fuel/energy are still growing. Fuel selection is determined mainly by fuel calorific value and the price. To select the type of the heating source one must take into account the cost of kWh of heat.


2020 ◽  
Vol 3 (01) ◽  
pp. 32-38
Author(s):  
Uduakobong Okorie ◽  
Ubong Robert ◽  
Ubong Iboh ◽  
Grace Umoren ◽  
Grace Umoren

In this work, the properties of the composite produced from waste carton with various tiger nut fibre contents having cassava starch slurry as binder were investigated. The results obtained showed the ranges of the mean thermal conductivity, bulk density, specific heat capacity, thermal diffusivity, thermal absorptivity, nailability, flexural strength  and compressive strength values to be (0.0447 – 0.0603) Wm-1K-1, (683.62 – 746.32) kgm-3, (1439.811 – 1840.554) J/kg/K, (5.612 - 3.553) 10-8 m2s-1, (25.456 – 31.993) m-1, (23.9 – 100)%, (1.58 – 1.86) MPa and (2.16 – 2.78) MPa respectively between  8.3% and 43.1% of the fibre content.  It was generally observed that with a choice variation in the fibre content, the performance of the developed board can be optimized for structural applications. Hence, instead of discarding the fibre as waste, recycling it can help to provide raw material for the production of cost effective and environmentally friendly materials. This will in turn reduce health risk caused by environmental pollution due to improper waste disposal practice of such material.


A completed study of a solar hot water heating system installed in a school showed an annual average efficiency of 15%, the low efficiency largely caused by the unfavourable pattern of use in schools. Field studies, in 80 existing and 12 new houses, of a simple domestic hot water system have been initiated to ascertain the influence of the occupants on the actual performance of solar collector systems. The development of testing methods of solar collectors and solar water heating systems is being undertaken in close collaboration with the B.S.I. and the E.E.C. Solar space heating is being investigated in two experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings in the U.K. show that they are far less cost-effective than other means of conserving energy in buildings.


2016 ◽  
Vol 31 (1) ◽  
Author(s):  
Selvaraj Sakthivel ◽  
Prithiviraj Balasubramanian ◽  
Masafumi Nakamura ◽  
Shunkei Ko ◽  
Paromita Chakraborty

AbstractXenobiotic detection systems-chemically activated luciferase expression (XDS-CALUX) bioassay in determining the toxic equivalency (TEQ) of PCDD/Fs from contaminated sites reported in several papers has been discussed in this study. CALUX bioassay method has been validated by an effective combined column clean-up system followed by addition of samples to monolayer cell cultures of H1L6.1c3 cell line in 96 well plates. Cultures are then examined under microscope after 24 h incubation followed by rinsing with 75 μL phosphate buffer saline and 30 μL of cell culture lysis. The response is observed in the luminometer and expressed in relative light unit (RLUs). CALUX-TEQ is estimated from a TCDD standard curve for unknown samples. Quality control in CALUX is done by selecting the range of CALUX values falling in the center of the linear standard curve. For developing nations CALUX biossay can be used as a cost effective and rapid screening technique for screening xenobiotic compounds from the hotspots like open solid waste burning sites, informal e-waste recycling workshops and industrial zones where constant monitoring for such compounds is required.


2021 ◽  
Vol 13 (19) ◽  
pp. 10927
Author(s):  
Anton Orlov ◽  
Elena Klyuchnikova ◽  
Anna Korppoo

Most municipal solid waste (MSW) in Russia is disposed of in landfills, and only a relatively small fraction is recycled. The landfilling of waste leads to greenhouse gas (GHG) emissions, and air and groundwater pollution. However, recently, there have been some initiatives to improve waste management in the country. We assessed the economic and environmental benefits of waste recycling in the Murmansk region, in which a new waste recycling plant has been operating since 2019. We found that MSW recycling in the Murmansk region has induced a small, positive, job creation effect and could potentially lead to a non-negligible reduction in GHG emissions. Extrapolating the results from this case study to the country level, we found that recycling landfilled MSW in Russia could save approximately 154 million tons of GHG emissions in carbon dioxide equivalents annually, which is comparable to the total CO2 emissions from Algeria. The positive environmental and health-related impacts from the extensive implementation of MSW recycling in the country could be substantial. From this case study, we also learned that one of the biggest challenges for the waste recycling company in the Murmansk region is finding profitable markets for recycled materials. Moreover, due to the high investment and operational costs, recycling MSW led to a substantial increase in communal fees. However, there is potential to make waste recycling more cost effective. Most MSW in the Murmansk region is still separated at the recycling plant, while separating waste at the source could substantially reduce operational costs. Other challenges in the large-scale implementation of MSW recycling in Russia, such as a lack of investments and the population’s willingness to recycle waste, are also discussed.


Author(s):  
Holger Roser

In this paper, a simple positive displacement mechanism is investigated, which comprises two counter-rotating meshing rotors within a casing. Although considered for various applications more than a century ago, the basic geometry of this mechanism has not been further explored or adapted to modern gas compressor technology. As a fully balanced rotational mechanism operating at uniform angular velocity, potential applications range from pumps to expanders, from slow large displacement to high-speed devices; nonetheless, this research focuses on high-performance oil-less gas compressors as an ideal application. During one complete cycle, the main rotor compresses and discharges the fluid, whilst the secondary rotor seals the compression chamber. Important features of this mechanism are the circular profiles of the rotors, the potential to accommodate large ports for reduced flow losses, and ease of cooling. The simple geometry facilitates a cost-effective means of achieving tight operating clearances between rotors and casing for enhanced sealing without the need for liquid lubricants such as oil. This study and preliminary tests indicate that pressure ratios suitable for standard industrial applications can be obtained over a broad speed range, whilst minimizing friction and flow losses, a major drawback of current technologies. Moreover, two-phase compression and injection of liquids prior to compression have been studied and identified as a means to further improve efficiency and cooling.


Author(s):  
John Humphreys ◽  
Dennis Hong

For their inherent stability and simplicity, wheeled robots are very common in robotics applications — but a major drawback of wheeled robots is their inability to navigate over large obstacles or steps without assistance. Active systems that have been designed for use on wheeled robots to lift the robot over a step — such as USU’s T3 and Virginia Tech’s IMPASS — are effective, but are limited due to the size, cost, and power required for the additional actuators. A novel, inertially actuated, passive dynamic system, excited by the motion of the robot, is introduced to allow a wheeled robot to “pop a wheelie” on each axle and hop over a step. The system investigated here is a sliding mass-spring that shifts forward and backward based on the acceleration of the base robot. By coordinating the acceleration and deceleration of the robot, the front wheels can lift over a step and the rear wheels can be pulled up afterward — both actions being a product of inertial actuation. Key advantages of this system are that the design is simple, cost-effective, and can be adjusted and retrofit to a different wheeled robot in the future with little effort. This paper presents the development of a novel inertially actuated, passive dynamic step climbing wheeled robot. Derivations of the dynamic model of the inertially actuated system are given and a computer simulation and experiments of an implementation of this sliding mass system are presented, followed by conclusions with possibilities for future work.


Sign in / Sign up

Export Citation Format

Share Document