Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture

2009 ◽  
Vol 14 (6) ◽  
pp. 547-559 ◽  
Author(s):  
Andrea Schreiber ◽  
Petra Zapp ◽  
Wilhelm Kuckshinrichs
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4571
Author(s):  
Adeel Arif ◽  
Muhammad Rizwan ◽  
Ali Elkamel ◽  
Luqman Hakeem ◽  
Muhammad Zaman

Cheap and clean energy demand is continuously increasing due to economic growth and industrialization. The energy sectors of several countries still employ fossil fuels for power production and there is a concern of associated emissions of greenhouse gases (GHG). On the other hand, environmental regulations are becoming more stringent, and resultant emissions need to be mitigated. Therefore, optimal energy policies considering economic resources and environmentally friendly pathways for electricity generation are essential. The objective of this paper is to develop a comprehensive model to optimize the power sector. For this purpose, a multi-period mixed integer programming (MPMIP) model was developed in a General Algebraic Modeling System (GAMS) to minimize the cost of electricity and reduce carbon dioxide (CO2) emissions. Various CO2 mitigation strategies such as fuel balancing and carbon capture and sequestration (CCS) were employed. The model was tested on a case study from Pakistan for a period of 13 years from 2018 to 2030. All types of power plants were considered that are available and to be installed from 2018 to 2030. Moreover, capacity expansion was also considered where needed. Fuel balancing was found to be the most suitable and promising option for CO2 mitigation as up to 40% CO2 mitigation can be achieved by the year 2030 starting from 4% in 2018 for all scenarios without increase in the cost of electricity (COE). CO2 mitigation higher than 40% by the year 2030 can also be realized but the number of new proposed power plants was much higher beyond this target, which resulted in increased COE. Implementation of carbon capture and sequestration (CCS) on new power plants also reduced the CO2 emissions considerably with an increase in COE of up to 15%.


2017 ◽  
Vol 57 ◽  
pp. 162-172 ◽  
Author(s):  
Gabriel D. Oreggioni ◽  
Bhawna Singh ◽  
Francesco Cherubini ◽  
Geoffrey Guest ◽  
Carine Lausselet ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
Flory Anette Dieck-Assad

Environmental, political, and economic events seem to conspire simultaneously towards the objective to erase coal-fired power plants. The most important events are: the increase of environmental regulations, the surge of natural gas as a cleaner fuel, the operative costs, the aging and the efficiency issue of the coal-fired power plants. However, the decision of the U.S.A. Supreme Court, the 29th of June 2015, suspended the regulation proposals presented by the U.S.A. Environmental Protection Agency concerning the mercury emissions of coal-fired power plants. This decision caused debate and controversy. The main objective of the sustainable approach for electricity generation is to find the blending of fuels that decrease contamination. However, the contradiction of different events in the world poses the challenge to evaluate if the XXI Century will see the end of the coal era. Could the technological breakthroughs like the Carbon Capture and Sequestration (CCS) and the development of other Clean Energy Technologies on Coal (CCT) stop this trend or, will the financial and environmental profitability of coal help it to remain in the energy mix?


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


Author(s):  
Graeme G. King ◽  
Satish Kumar

Masdar is developing several carbon capture projects from power plants, smelters, steel works, industrial facilities and oil and gas processing plants in Abu Dhabi in a phased series of projects. Captured CO2 will be transported in a new national CO2 pipeline network with a nominal capacity of 20×106 T/y to oil reservoirs where it will be injected for reservoir management and sequestration. Design of the pipeline network considered three primary factors in the selection of wall thickness and toughness, (a) steady and transient operating conditions, (b) prevention of longitudinal ductile fractures and (c) optimization of total project owning and operating costs. The paper explains how the three factors affect wall thickness and toughness. It sets out code requirements that must be satisfied when choosing wall thickness and gives details of how to calculate toughness to prevent propagation of long ductile fracture in CO2 pipelines. It then uses cost optimization to resolve contention between the different requirements and arrive at a safe and economical pipeline design. The design work selected a design pressure of 24.5 MPa, well above the critical point for CO2 and much higher than is normally seen in conventional oil and gas pipelines. Despite its high operating pressure, the proposed network will be one of the safest pipeline systems in the world today.


Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Qusay Hassan ◽  
Saadoon Abdul Hafedh ◽  
Ali Hasan ◽  
Marek Jaszczur

Abstract The study evaluates the visibility of solar photovoltaic power plant construction for electricity generation based on a 20 MW capacity. The assessment was performed for four main cities in Iraq by using hourly experimental weather data (solar irradiance, wind speed, and ambient temperature). The experimental data was measured for the period from 1st January to 31st December of the year 2019, where the simulation process was performed at a 1 h time step resolution at the same resolution as the experimental data. There are two positionings considered for solar photovoltaic modules: (i) annual optimum tilt angle and (ii) two-axis tracking system. The effect of the ambient temperature and wind on the overall system energy generated was taken into consideration. The study is targeted at evaluating the potential solar energy in Iraq and the viability of electricity generation using a 20 MW solar photovoltaic power plant. The results showed that the overall performance of the suggested power plant capacity is highly dependent on the solar irradiance intensity and the ambient temperature with wind speed. The current 20 MW solar photovoltaic power plant capacity shows the highest energy that can be generated in the mid-western region and the lowest in the northeast regions. The greatest influence of the ambient temperature on the energy genrated by power plants is observed in the southern regions.


Sign in / Sign up

Export Citation Format

Share Document