Abstract
This study focuses on characterizing the adsorption kinetics of sex hormones (estrone, 17β-estradiol, 17α-ethinylestradiol, and estriol) on electrospun nanofibrous polymeric nanostructures based on cellulose acetate, polyamide, polyethersulfone, polyurethane, and polyacrylonitrile. The materials’ structure possessed fibers of average diameter in the range 174-330 nm, while its specific surface area equaled 10.2 to 20.9 m2/g. The adsorption-desorption process was investigated in four cycles to determine the reusability of the sorption systems. A one-step high-performance liquid chromatography technique was developed to detect concurrently each hormone present in the solution. Experimental data was applied to gauge adsorption kinetics with the aid of pseudo-first-order, pseudo-second-order, and intraparticle diffusion models; findings showed that estrone, estradiol, and ethinylestradiol followed pseudo-second-order kinetics, while estriol followed pseudo-first-order kinetics. It was observed that polyurethane had maximum adsorption capacities of 0.801, 0.590, 0.736, and 0.382 mg/g for estrone, 17β-estradiol, 17α-ethinylestradiol, and estriol, respectively. The results revealed that polyurethane had the highest percentage efficiency of estrogens removal at ~58.9% and lowest for polyacrylonitrile at ~35.1%. Consecutive adsorption-desorption cycles demonstrated that polyurethane maintained high efficiency, even after being used four times compared with the other polymers. The findings indicate the studied nanostructures have the potential to be effective sorbents for eradicating these estrogens concurrently from the environment.