Tropical cyclones and multiscale climate variability: The active western North Pacific Typhoon season of 2018

2019 ◽  
Vol 63 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Liang Wu ◽  
Hongjie Zhang ◽  
Tao Feng ◽  
Yulian Tang
2009 ◽  
Vol 66 (11) ◽  
pp. 3383-3400 ◽  
Author(s):  
Jan-Huey Chen ◽  
Melinda S. Peng ◽  
Carolyn A. Reynolds ◽  
Chun-Chieh Wu

Abstract In this study, the leading singular vectors (SVs), which are the fastest-growing perturbations (in a linear sense) to a given forecast, are used to examine and classify the dynamic relationship between tropical cyclones (TCs) and synoptic-scale environmental features that influence their evolution. Based on the 72 two-day forecasts of the 18 western North Pacific TCs in 2006, the SVs are constructed to optimize perturbation energy within a 20° × 20° latitude–longitude box centered on the 48-h forecast position of the TCs using the Navy Operational Global Atmospheric Prediction System (NOGAPS) forecast and adjoint systems. Composite techniques are employed to explore these relationships and highlight how the dominant synoptic-scale features that impact TC forecasts evolve on seasonal time scales. The NOGAPS initial SVs show several different patterns that highlight the relationship between the TC forecast sensitivity and the environment during the western North Pacific typhoon season in 2006. In addition to the relation of the SV maximum to the inward flow region of the TC, there are three patterns identified where the local SV maxima collocate with low-radial-wind-speed regions. These regions are likely caused by the confluence of the flow associated with the TC itself and the flow from other synoptic systems, such as the subtropical high and the midlatitude jet. This is the new finding beyond the previous NOGAPS SV results on TCs. The subseasonal variations of these patterns corresponding to the dynamic characteristics are discussed. The SV total energy vertical structures for the different composites are used to demonstrate the contributions from kinetic and potential energy components of different vertical levels at initial and final times.


2018 ◽  
Vol 35 (4) ◽  
pp. 423-434
Author(s):  
Shumin Chen ◽  
Weibiao Li ◽  
Zhiping Wen ◽  
Mingsen Zhou ◽  
Youyu Lu ◽  
...  

2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


2009 ◽  
Vol 2 (6) ◽  
pp. 333-338
Author(s):  
He Jie-Lin ◽  
Guan Zhao-Yong ◽  
Qian Dai-Li ◽  
Wan Qi-Lin ◽  
Wang Li-Juan

2018 ◽  
Vol 32 (2) ◽  
pp. 309-334
Author(s):  
J. G. McLay ◽  
E. A. Hendricks ◽  
J. Moskaitis

ABSTRACT A variant of downscaling is devised to explore the properties of tropical cyclones (TCs) that originate in the open ocean of the western North Pacific Ocean (WestPac) region under extreme climates. This variant applies a seeding strategy in large-scale environments simulated by phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate-model integrations together with embedded integrations of Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC), an operational, high-resolution, nonhydrostatic, convection-permitting numerical weather prediction (NWP) model. Test periods for the present day and late twenty-first century are sampled from two different integrations for the representative concentration pathway (RCP) 8.5 forcing scenario. Then seeded simulations for the present-day period are contrasted with similar seeded simulations for the future period. Reinforcing other downscaling studies, the seeding results suggest that the future environments are notably more conducive to high-intensity TC activity in the WestPac. Specifically, the future simulations yield considerably more TCs that exceed 96-kt (1 kt ≈ 0.5144 m s−1) intensity, and these TCs exhibit notably greater average life cycle maximum intensity and tend to spend more time above the 96-kt intensity threshold. Also, the future simulations yield more TCs that make landfall at >64-kt intensity, and the average landfall intensity of these storms is appreciably greater. These findings are supported by statistical bootstrap analysis as well as by a supplemental sensitivity analysis. Accounting for COAMPS-TC intensity forecast bias using a quantile-matching approach, the seeded simulations suggest that the potential maximum western North Pacific TC intensities in the future extreme climate may be approximately 190 kt.


1999 ◽  
Vol 127 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Jeng-Ming Chen ◽  
Russell L. Elsberry ◽  
Mark A. Boothe ◽  
Lester E. Carr

Sign in / Sign up

Export Citation Format

Share Document