Fabrication of a biomimetic controllable adhesive surface by ultraprecision multistep and layered scribing and casting molding

Author(s):  
Wei Wang ◽  
ZongWu Xie
Keyword(s):  
Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Raquel Santos dos Santos ◽  
Jeane Rodrigues Rodrigues ◽  
Jhennifer Gomes Cordeiro ◽  
Hadda Tercya ◽  
Marissol Leite ◽  
...  

Summary This study describes the embryonic development of Moenkhausia oligolepis in laboratory conditions. After fertilization, the embryos were collected every 10 min up to 2 h, then every 20 min up to 4 h, and afterwards every 30 min until hatching. The fertilized eggs of M. oligolepis measured approximately 0.85 ± 0.5 mm and had an adhesive surface. Embryonic development lasted 14 h at 25ºC through the zygote, cleavage, blastula, gastrula, neurula, and segmentation phases. Hatching occurred in embryos around the 30-somites stage. The present results contribute only the second description of embryonic development to a species from the Moenkhausia genus, being also the first for this species. Such data are of paramount importance considering the current conflicting state of this genus phylogenetic classification and may help taxonomic studies. Understanding the biology of a species that is easily managed in laboratory conditions and has an ornamental appeal may assist studies in its reproduction to both supply the aquarium market and help the species conservation in nature. Moreover, these data enable the use of M. oligolepis as a model species in biotechnological applications, such as the germ cell transplantation approach.


2021 ◽  
pp. 70-75
Author(s):  
Viktor Yurievich Kozlov ◽  
Larisa Arkadyevna Karaseva

A safe hospital environment should fully provide the patient and healthcare professional with the comfort and safety conditions that effectively address vital health needs. To this end, medical devices are manufactured for the healthcare industry to ensure the safety of the hospital environment for patients and medical workers [2, 3].


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 133-152
Author(s):  
Susan J. Kimber ◽  
M. Azim ◽  
H. Surani ◽  
Sheila C. Barton

Whole 8-cell morulae can be aggregated with isolated inner cell masses from blastocysts. On examining semithin light microscope sections of such aggregates we found that cells of the morula changed shape and spread over the surface of the ICM, thus translocating it to the inside of the aggregate. Using single cells from 8-cell embryos in combination with single cells from other stage embryos or isolated ICMs we show that 1/8 blastomeres spread over other cells providing a suitably adhesive surface. The incidence of spreading is high with inner cells from 16-cell embryos (56 %) and 32-cell embryos (62%) and isolated inner cell masses (64%). In contrast, the incidence of spreading of 1/8 blastomeres is low over outer cells from 16-cell embryos (26%) and 32-cell embryos (13%). Blastomeres from 8-cell embryos do not spread over unfertilized 1-cell eggs, 1/2 or 1/4 cells or trophectoderm cells contaminating isolated ICMs. When 1/8 cells are aggregated in pairs they flatten on one another (equal spreading) as occurs at compaction in whole 8-cell embryos. However, if 1/8 is allowed to divide to 2/16 in culture one of the cells engulfs the other (51-62/ pairs). Based on the ideas of Holtfreter (1943) and Steinberg (1964,1978) these results are interpreted to indicate an increase in adhesiveness at the 8-cell stage as well as cytoskeletal mobilization. Following the 8-cell stage there is an increase in adhesiveness of inside cells while the outside cells decrease in adhesiveness. The difference in adhesiveness between inside and outside cells in late morulae is probably central to the divergent differentiation of (inner) ICM and (outer) trophectoderm cell populations.


1985 ◽  
Vol 74 (1) ◽  
pp. 267-282
Author(s):  
L.V. Domnina ◽  
J.A. Rovensky ◽  
J.M. Vasiliev ◽  
I.M. Gelfand

The role of microtubules in the spreading of cells from the liver-derived IAR2 rat cell line was studied. Cells in the control medium seeded on a flat isotropic glass surface rapidly spread to form discoid shapes. Spreading in colcemid-containing medium was disorganized and delayed; partial reversal of spreading was observed. Nevertheless, even in the presence of colcemid the cells finally spread to discoid flattened shapes. IAR2 cells in medium without colcemid spread not to discoid but to elongated shapes under three different sets of conditions: (1) when the cells were forced to spread on narrow strips of adhesive glass surface between two non-adhesive lipid films; (2) when the cells spread on the poorly adhesive surface of poly(HEMA)-covered glass; (3) when the cells spread on the usual glass surfaces in medium containing cytochalasin D. Addition of colcemid to the media reversed the polarized spreading under the first two conditions; colcemid did not reverse the formation of the elongated cell shape acquired by the cells spreading in cytochalasin-containing medium. Effects of microtubule-destroying drugs on the spreading of epithelial and fibroblast cells are compared and discussed. It is suggested that microtubules are essential for the stabilization of the spread state of those attached cytoplasmic processes and lamellae that do not have numerous and stable-cell substratum contacts, e.g. the processes formed at the early stages of spreading or the elongated processes of polarized cells. Possibly, microtubules stabilize the non-contracted state of the actin cytoskeleton in these processes.


Author(s):  
Vijay Pappu ◽  
Prosenjit Bagchi

Three-dimensional computational modeling and simulation using front tracking method are presented on the motion of a deformable cell over an adhesive surface in a shear flow. The numerical method couples a Navier-Stokes flow solver with cell membrane mechanics, and a Monte Carlo simulation to capture stochastic formation and breakage of receptor/ligand bonds. The entire range of events during cell adhesion, namely, initial arrest of a free-flowing cell, slow rolling of an adherent cell, and detachment off the surface is simulated. Simulations are conducted to signify the role of hydrodynamic lift force that exists for a deformable particle in a wall-bounded flow. Three sets of numerical experiments are presented. In the first set, we consider the initial arrest of the cell, and show that the time needed for the cell to arrest increases with increasing Ca, but rapidly drops and saturates for higher bond strength. In the second set, we consider quasi-steady rolling motion of the cell, and predict the experimentally observed “stop and go” motion of the rolling leukocytes which is characterized by intermittent pauses and sudden jumps in cell velocity. In the third set we consider the detachment of the cell from the surface upon breakage of bonds. The bond strength needed to prevent the detachment of an adherent cell is computed and shown to be maximum for an intermediate Ca.


Sign in / Sign up

Export Citation Format

Share Document