scholarly journals Simulation of long-term thermo-mechanical response of clay using an advanced constitutive model

2018 ◽  
Vol 14 (2) ◽  
pp. 295-311 ◽  
Author(s):  
Despina M. Zymnis ◽  
Andrew J. Whittle ◽  
Xiaohui Cheng
2020 ◽  
Vol 37 ◽  
pp. 118-125
Author(s):  
Weihua Zhou ◽  
Changqing Fang ◽  
Huifeng Tan ◽  
Huiyu Sun

Abstract Uncured rubber possesses remarkable hyperelastic and viscoelastic properties while it undergoes large deformation; therefore, it has wide application prospects and attracts great research interests from academia and industry. In this paper, a nonlinear constitutive model with two parallel networks is developed to describe the mechanical response of uncured rubber. The constitutive model is incorporated with the Eying model to describe the hysteresis phenomenon and viscous flow criterion, and the hyperelastic properties under large deformation are captured by a non-Gaussian chain molecular network model. Based on the model, the mechanical behaviors of hyperelasticity, viscoelasticity and hysteresis under different strain rates are investigated. Furthermore, the constitutive model is employed to estimate uniaxial tensile, cyclic loading–unloading and multistep tensile relaxation mechanical behaviors of uncured rubber, and the prediction results show good agreement with the test data. The nonlinear mechanical constitutive model provides an efficient method for predicting the mechanical response of uncured rubber materials.


2007 ◽  
Vol 345-346 ◽  
pp. 685-688 ◽  
Author(s):  
Werner Ecker ◽  
Thomas Antretter ◽  
R. Ebner

Pressure casting dies are subjected to a large number of thermal as well as mechanical load cycles, which are leading to a characteristic thermally induced crack network on the die surface. As a typical representative for a die material the cyclic thermo-mechanical behavior of the hot work tool steel grade 1.2343 (X38CrMoV5-1) is investigated both experimentally as well as numerically. On the one hand the information from isothermal compression-tension tests is used in a subsequent analysis to calibrate a constitutive model that takes into account the characteristic combined isotropic-kinematic hardening/softening of the material. On the other hand the non-isothermal mechanical response of the material to thermal cycles is characterized by means of a periodic laser pulse applied to a small plate-like specimen which is cooled on the back. The residual stresses developing at the surface of the irradiated region of the specimen are determined ex-situ by means of X-ray diffraction. The obtained values agree well with the results of an accompanying finite-element study. This information is used to verify the calibrated constitutive model. The material law is finally used for the prediction of stresses and strains in a die.


2017 ◽  
Vol 62 (4) ◽  
pp. 753-774
Author(s):  
M. Abdia ◽  
H. Molladavoodi ◽  
H. Salarirad

Abstract The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.


Author(s):  
Y. Kostenko ◽  
K. Naumenko

Many power plant components and joint connections are subjected to complex thermo-mechanical loading paths under severe temperature environments over a long period. An important part in the lifetime assessment is the reliable prediction of stress relaxation using improved creep modeling to avoid possible integrity or functionality issues and malfunction in such components. The aim of this work is to analyze the proposed constitutive model for advanced high chromium steels with the goal of predicting stress relaxation over the long term. The evolution equations of the constitutive model for inelastic material behavior are introduced to account for hardening and softening phenomena. The material properties were identified for 9–12%CrMoV steels in the creep range. The model is applied to the stress relaxation analysis of power plant components. The results for long-term assessment, which are encouragingly close to reality, will be presented and discussed. An outlook on further developments of the model and assessment procedure is also provided.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Scott G. McLean ◽  
Kaitlyn F. Mallett ◽  
Ellen M. Arruda

Anterior cruciate ligament (ACL) injury is a common and potentially catastrophic knee joint injury, afflicting a large number of males and particularly females annually. Apart from the obvious acute injury events, it also presents with significant long-term morbidities, in which osteoarthritis (OA) is a frequent and debilitative outcome. With these facts in mind, a vast amount of research has been undertaken over the past five decades geared toward characterizing the structural and mechanical behaviors of the native ACL tissue under various external load applications. While these efforts have afforded important insights, both in terms of understanding treating and rehabilitating ACL injuries; injury rates, their well-established sex-based disparity, and long-term sequelae have endured. In reviewing the expanse of literature conducted to date in this area, this paper identifies important knowledge gaps that contribute directly to this long-standing clinical dilemma. In particular, the following limitations remain. First, minimal data exist that accurately describe native ACL mechanics under the extreme loading rates synonymous with actual injury. Second, current ACL mechanical data are typically derived from isolated and oversimplified strain estimates that fail to adequately capture the true 3D mechanical response of this anatomically complex structure. Third, graft tissues commonly chosen to reconstruct the ruptured ACL are mechanically suboptimal, being overdesigned for stiffness compared to the native tissue. The net result is an increased risk of rerupture and a modified and potentially hazardous habitual joint contact profile. These major limitations appear to warrant explicit research attention moving forward in order to successfully maintain/restore optimal knee joint function and long-term life quality in a large number of otherwise healthy individuals.


Author(s):  
A. P. S. Selvadurai ◽  
A. P. Suvorov

The paper investigates the development of instability in an internally pressurized annulus of a poro-hyperelastic material. The theory of poro-hyperelasticity is proposed as an approach for modelling the mechanical behaviour of highly deformable elastic materials, the pore space of which is saturated with a fluid. The consideration of coupling between the mechanical response of the hyperelastic porous skeleton and the pore fluid is important when applying the developments to soft tissues encountered in biomechanical applications. The paper examines the development of an instability in a poro-hyperelastic annulus subjected to internal pressure. Using a computational approach, numerical solutions are obtained for the internal pressures that promote either short-term or long-term instability in a poro-hyperelastic annulus and a poro-hyperelastic shell. In addition, time-dependent effects of stability loss are examined. The analytical solutions are used to benchmark the accuracy of the computational approach.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2375
Author(s):  
Wufan Chen ◽  
Panpan Wan ◽  
Qingkun Zhao ◽  
Haofei Zhou

Gradient nanotwinned (GNT) metals exhibit extra strengthening and work hardening behaviors, which endow them impressive potentials in engineering applications. The increased strength is attributed to the dense interactions between dislocations and boundaries in the grain interiors. However, a constitutive model elucidating the extra strengthening effect is currently lacking. Here, we propose a theoretical framework to describe the mechanical response of GNT metals, especially the unusual extra strengthening behavior. The model captures the deformation mechanisms of GNT metals and coincides well with the reported experiment. The constitutive description developed in this work presents a tool to guide the structural design for developing gradient metallic materials.


2021 ◽  
Author(s):  
Erich Bauer

For the long-term behavior and safety assessment of rockfill dams, not only the shape of the dam body, the loading history, the geological condition of the dam foundation and abutments, the assessment of possible seismic hazards and seepage events caused by defects of the sealing are important, but also the time dependent mechanical behavior of the dam materials used can be of significant influence. In this paper a novel hypoplastic constitutive model for moisture sensitive, coarse-grained rockfill materials is presented. In the constitutive equations, the so-called solid hardness is a key parameter to reflect the influence of the state of weathering on the mechanical response. With respect to the evolution equation for the solid hardness, creep and stress relaxation can be modeled for dry and wet states of the material in a unified manner. The performance of the model is demonstrated by comparing the numerical simulation with experimental data.


Sign in / Sign up

Export Citation Format

Share Document