scholarly journals Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications

Plasmonics ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. 1379-1385 ◽  
Author(s):  
Kristof Lodewijks ◽  
Jef Ryken ◽  
Willem Van Roy ◽  
Gustaaf Borghs ◽  
Liesbet Lagae ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4654
Author(s):  
William O. F. Carvalho ◽  
J. R. Mejía-Salazar

We investigate the plasmonic behavior of a fractal photonic crystal fiber, with Sierpinski-like circular cross-section, and its potential applications for refractive index sensing and multiband polarization filters. Numerical results were obtained using the finite element method through the commercial software COMSOL Multiphysics®. A set of 34 surface plasmon resonances was identified in the wavelength range from λ=630 nm to λ=1700 nm. Subsets of close resonances were noted as a consequence of similar symmetries of the surface plasmon resonance (SPR) modes. Polarization filtering capabilities are numerically shown in the telecommunication windows from the O-band to the L-band. In the case of refractive index sensing, we used the wavelength interrogation method in the wavelength range from λ=670 nm to λ=790 nm, where the system exhibited a sensitivity of S(λ)=1951.43 nm/RIU (refractive index unit). Due to the broadband capabilities of our concept, we expect that it will be useful to develop future ultra-wide band optical communication infrastructures, which are urgent to meet the ever-increasing demand for bandwidth-hungry devices.


Plasmonics ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. 351-362 ◽  
Author(s):  
Denise E. Charles ◽  
Matthew Gara ◽  
Damian Aherne ◽  
Deirdre M. Ledwith ◽  
John M. Kelly ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 1524 ◽  
Author(s):  
De He ◽  
Tieyan Zhang ◽  
Lu Liu ◽  
Shixing Guo ◽  
Zhijun Liu

Surface-enhanced infrared absorption spectroscopy (SEIRA) is attractive for molecular sensing due to its high sensitivity and access to molecular fingerprint absorptions. In this paper, we report on refractive index sensing of monolayer molecules in a spectral band outside the molecular fingerprint region. In a metagrating composed of a three-layer metal-insulator-metal structure, both propagating surface plasmon resonances (PSPs) and local surface plasmon resonances (LSPRs) are exited from free-space in a broad band of 3 to 9 µm, and their sensing properties are characterized. In response to a self-assembled monolayer of octadecanethiol (ODT) molecules, both PSPs and LSPRs exhibit redshifts in wavelength. The shifts of LSPRs are larger than those of PSPs, as originated from their stronger spatial confinement and larger field enhancement. Our proposed mid-infrared molecular sensor is immune to frequency variations of plasmon resonance and more tolerant to sample feature size variation.


2020 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Muhammad Ali ALI Butt ◽  
Nikolay Kazanskiy

We studied the metal-insulator-metal square ring resonator design incorporated with nano-dots that serve to squeeze the surface plasmon wave in the cavity of the ring. The E-field enhances at the boundaries of the nano-dots providing a strong interaction of light with the surrounding medium. As a result, the sensitivity of the resonator is highly enhanced compared to the standard ring resonator design. The best sensitivity of 907 nm/RIU is obtained by placing seven nano-dots of radius 4 nm in all four sides of the ring with a period (ᴧ)= 3r. The proposed design will find applications in biomedical science as highly refractive index sensors. Full Text: PDF References:Z. Han, S. I. Bozhevolnyi. "Radiation guiding with surface plasmon polaritons", Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]N.L. Kazanskiy, S.N. Khonina, M.A. Butt. "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E 117, 113798 (2020). [CrossRef]D.K. Gramotnev, S.I. Bozhevolnyi. "Plasmonics beyond the diffraction limit", Nat. Photonics 4, 83 (2010). [CrossRef]A.N.Taheri, H. Kaatuzian. "Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters", Applied Optics 53, 28 (2014). [CrossRef]P. Neutens, L. Lagae, G. Borghs, P. V. Dorpe. "Plasmon filters and resonators in metal-insulator-metal waveguides", Optics Express 20, 4 (2012). [CrossRef]M.A. Butt, S.N. Khonina, N. L. Kazanskiy. "Metal-insulator-metal nano square ring resonator for gas sensing applications", Waves in Random and complex media [CrossRef]M.A.Butt, S.N.Khonina, N.L.Kazanskiy. "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing", Journal of Modern Optics 65, 1135 (2018). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy, "Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator", Waves in Random and complex media [CrossRef]Y. Fang, M. Sun. "Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits", Light:Science & Applications 4, e294 (2015). [CrossRef]H. Lu, G.X. Wang, X.M. Liu. "Manipulation of light in MIM plasmonic waveguide systems", Chin Sci Bull [CrossRef]J.N. Anker et al. "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 (2008). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy. Journal of Modern Optics 66, 1038 (2019).[CrossRef]Z.-D. Zhang, H.-Y. Wang, Z.-Y. Zhang. "Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide", Plasmonics 8,797 (2013) [CrossRef]Y. Yu, J. Si, Y. Ning, M. Sun, X. Deng. Opt. Lett. 42, 187 (2017) [CrossRef]B.H.Zhang, L-L. Wang, H-J. Li et al. "Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure", J. Opt. 18,065001 (2016) [CrossRef]X. Zhao, Z. Zhang, S. Yan. "Tunable Fano Resonance in Asymmetric MIM Waveguide Structure", Sensors 17, 1494 (2017) [CrossRef]J. Zhou et al. "Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity", AIP Advances 7, 015020 (2017) [CrossRef]V. Perumal, U. Hashim. "Advances in biosensors: Principle, architecture and applications", J. Appl. Biomed. 12, 1 (2014)[CrossRef]H.Gai, J. Wang , Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations", Appl. Opt. 46 (12), 2229 (2007) [CrossRef]


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3821 ◽  
Author(s):  
Faustino Reyes Gómez ◽  
Rafael Rubira ◽  
Sabrina Camacho ◽  
Cibely Martin ◽  
Robson da Silva ◽  
...  

The recent development of silver nanostars (Ag-NSs) is promising for improved surface-enhanced sensing and spectroscopy, which may be further exploited if the mechanisms behind the excitation of localized surface plasmon resonances (LSPRs) are identified. Here, we show that LSPRs in Ag-NSs can be obtained with finite-difference time-domain (FDTD) calculations by considering the nanostars as combination of crossed nanorods (Ag-NRs). In particular, we demonstrate that an apparent tail at large wavelengths ( λ ≳ 700 nm) observed in the extinction spectra of Ag-NSs is due to a strong dipolar plasmon resonance, with no need to invoke heterogeneity (different number of arms) effects as is normally done in the literature. Our description also indicates a way to tune the strongest LSPR at desired wavelengths, which is useful for sensing applications.


2020 ◽  
Vol 10 (10) ◽  
pp. 3595
Author(s):  
Vasily V. Gerasimov ◽  
Ruslan R. Hafizov ◽  
Sergei A. Kuznetsov ◽  
Pavel A. Lazorskiy

In this paper, we studied the sensing performance of metasurfaces comprised by spiral-disk-shaped metallic elements patterned on polypropylene substrates, which exhibited localized surface plasmon resonances in the low-frequency region of the terahertz (THz) spectrum (0.2–0.5 THz). Optimal designs of spiral disks with C-shaped resonators placed near the disks were determined and fabricated. The experimentally measured transmittance spectra of the samples coated with very thin photoresistive layers (d ~ 10−4–10−3 λ) showed good agreement with the simulations. The resonance frequency shift Δf increases with increasing d, while saturating near d = 50 µm. The narrow-band magnetic dark modes excited on symmetrical spiral disks with a 90° C-resonator demonstrated very high figure of merit (FOM) values reaching 1670 (RIU·mm)−1 at 0.3 μm thick analyte. The hybrid high order resonances excited on asymmetrical densely packed spiral disks showed about two times larger FOM values (up to 2950 (RIU·mm)−1) compared to symmetrical distantly spaced spirals that resembled the best FOM results found in the literature for metasurfaces fabricated with a similar technique. The demonstrated high sensing performance of spiral disks is evaluated to be promising for bio-sensing applications in the THz range.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 687 ◽  
Author(s):  
Zhihui He ◽  
Weiwei Xue ◽  
Wei Cui ◽  
Chunjiang Li ◽  
Zhenxiong Li ◽  
...  

We investigate Fano resonances and sensing enhancements in a simple Au/TiO2 hybrid metasurface through the finite-different time-domain (FDTD) simulation and coupled mode theory (CMT) analysis. The results show that the Fano resonance in the proposed simple metasurface is caused by the destructive interaction between the surface plasmon polaritons (SPPs) and the local surface plasmon resonances (LSPRs), the quality factor and dephasing time for the Fano resonance can be effectively tuned by the thickness of Au and TiO2 structures, the length of each unit in x and y directions, as well as the structural defect. In particular, single Fano resonance splits into multiple Fano resonances caused by a stub-shaped defect, and multiple Fano resonances can be tuned by the size and position of the stub-shaped defect. Moreover, we also find that the sensitivity in the Au/TiO2 hybrid metasurface with the stub-shaped defect can reach up to 330 nm/RIU and 535 nm/RIU at the Fano resonance 1 and Fano resonance 2, which is more than three times as sensitive in the Au/TiO2 hybrid metasurface without the stub-shaped defect, and also higher than that in the TiO2 metasurface reported before. These results may provide further understanding of Fano resonances and guidance for designing ultra-high sensitive refractive index sensors.


2019 ◽  
Vol 9 (22) ◽  
pp. 4850 ◽  
Author(s):  
Mahmoud H. Elshorbagy ◽  
Alexander Cuadrado ◽  
Javier Alda

This work reports on a computational analysis of how a modified perovskite cell can work as a refractometric sensor by generating surface plasmon resonances at its front surface. Metal-dielectric interfaces are necessary to excite plasmonic resonances. However, if the transparent conductor (ITO) is replaced by a uniform metal layer, the optical absorption at the active layer decreases significantly. This absorption enhances again when the front metallic surface is nanostructured, adding a periodic extruded array of high aspect-ratio dielectric pyramids. This relief excites surface plasmon resonances through a grating coupling mechanism with the metal surface. Our design allows a selective absorption in the active layer of the cell with a spectral response narrower than 1 nm. The photo-current generated by the cells becomes the signal of the sensor. The device employs an opto-electronic interrogation method, instead of the well-known spectral acquisition scheme. The sensitivity and figure of merit (FOM) parameters applicable to refractometric sensors were adapted to this new situation. The design has been customized to sense variations in the index of refraction of air between 1.0 and 1.1. The FOM reaches a maximum value of 1005 RIU − 1 , which is competitive when considering some other advantages, as the easiness of the acquisition signal procedure and the total cost of the sensing system. All the geometrical and material parameters included in our design were selected considering the applicable fabrication constrains.


Sign in / Sign up

Export Citation Format

Share Document