Effects of heat-treatment temperature on Eu3+ and Li+ Co-doped ZnO photoluminescence by sol-gel process

2008 ◽  
Vol 23 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Zhongyuan Lu ◽  
Fangfang He ◽  
Pichi Xu ◽  
Yuancheng Teng ◽  
Bing Wang
2015 ◽  
Vol 9 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Leonardo Rocha ◽  
Sidney Ribeiro ◽  
Arnaldo Pereira ◽  
Marco Schiavon ◽  
Jefferson Ferrari

This work reports on the preparation of materials based on Yb3+/Er3+ co-doped SiO2-Gd2O3 via sol-gel process. The 0.4mol%of Er3+ ions was fixed and the amount of Yb3+ ions changed as 1.8, 5 and 9mol%in order to evaluate the photoluminescence properties as a function of the Yb3+ ions concentration. The prepared xerogels were heat-treated at 900, 1000 and 1100?C for 8 h. X-ray diffraction analyses of the heat-treated materials confirmed the formation of the Gd2O3 cubic phase embedded in the SiO2 host, demonstrating the effective incorporation of RE3+ ions in the structure. The Scherrer?s equation verified that the sizes of Gd2O3 nanocrystallite are between 31 and 69 nm and directly dependent on the heat-treatment temperature. Under excitation at 980 nm all materials showed upconversion phenomena, and the intensities of the emissions in the green and red regions showed to be directly dependent on power pump of laser, quantity of Yb3+ ions and heat-treatment temperature. The materials also showed emission in the infrared region with the maximum around 1530 nm, assigned to the transition of 4I13/2 ? 4I15/2 of the Er3+ ions, region known as technological C-telecom band used in optical amplification.


2012 ◽  
Vol 512-515 ◽  
pp. 1686-1689
Author(s):  
Jie Chen ◽  
Le Fu Mei ◽  
Li Bing Liao

In this paper, porous carbon has been used to carry TiO2 and TiO2-N by a sol-gel process. The effect of soaking time, heat treatment temperature, and heat treatment time on the carrying efficiency have been studied. XRD experiments indicated that TiO2 and TiO2-N crystallized in anatase and rutile with the ratio of 3∶2. SEM images showed that island-like TiO2 and TiO2-N particles with diameters in the range of 1-5um, the biggest size is about 10um, were evenly coated on the surface of the porous carbon.


2013 ◽  
Vol 712-715 ◽  
pp. 257-261
Author(s):  
Yin Lin Wu ◽  
Qing Hui Wang ◽  
Ling Wang ◽  
Hai Yan Zhao

The La0.75Sr0.25Cr0.5Mn0.5O3-δnanometer powders were prepared by citric acid sol-gel method.The samples were characterized by DTA, FT-IR, XRD, TEM techniques. The preparation process, morphology of synthesized powders, the best heat-treatment temperature and the electrochemical performance had been studied. The results show that the spherical nanometer powders can be obtained and the best heat-treatment temperature is 800°C. The particle size is about 30nm and Ea is 0.071 eV.


2010 ◽  
Vol 105-106 ◽  
pp. 123-125 ◽  
Author(s):  
Yong Li ◽  
Qi Hong Wei ◽  
Ling Li ◽  
Chong Hai Wang ◽  
Xiao Li Zhang ◽  
...  

In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.


2014 ◽  
Vol 936 ◽  
pp. 975-980 ◽  
Author(s):  
Kai Lin Fu ◽  
Wei Hui Jiang ◽  
Guo Feng ◽  
Jian Min Liu ◽  
Qian Wu ◽  
...  

Mullite whisker was prepared at low temperature via non-hydrolytic sol-gel (NHSG) process combined with molten salt method. The influence of heat treatment temperature was studied on the morphology and the microstructure of whisker, and its growth mechanism was also described. The results show that the mullite whisker appears at the lowest temperature of 750 °C, and optimized mullite whisker can be prepared at 850 °C with the growth direction of [00, whose diameter is in the range of 170~300 nm with the aspect ratio of >30.


2010 ◽  
Vol 663-665 ◽  
pp. 397-400 ◽  
Author(s):  
Peng Fei Cheng ◽  
Sheng Tao Li ◽  
Han Chen Liu ◽  
Li Xun Song ◽  
Bin Gao ◽  
...  

The effect of an impurity as a donor or an acceptor in ZnO film is determined by its distribution in ZnO lattice. In this paper the distribution of Li is investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that Li-doped ZnO films own different dependence on heat treatment temperature by contrast with pure ZnO films. For Li-doped ZnO films, although the crystallinity is promoted after heat treatment at 500oC, it is impeded effectively after heat treatment at 600oC. The abnormal phenomenon implies that Li preferential inhabits at Zn-sublattice to form a substitutional defect as an acceptor unless Li content exceeds its solubility in Zn-sublattice. The change of the PL spectra of pure ZnO films after heat treatment at different temperatures reveals that the PL peak at 650nm origins from interstitial defects. Moreover, with the increase of Li content, the intensity of the peak at 650nm decreases firstly and then increases again. This interesting changing trend further reveals that superfluous Li will enter into the octahedral interspaces as donors. As a conclusion it is proposed that it is difficult to obtain high conductive p-ZnO by monodoping of Li.


2014 ◽  
Vol 1078 ◽  
pp. 31-35
Author(s):  
Liang Zhao ◽  
Qun Hu Xue ◽  
Dong Hai Ding

MgO-Al2O3-ZrO2composite powders with 3 kinds of mass ratio were synthesized by sol–gel method using MgCl2·6H2O, AlCl3·6H2O and ZrOCl2·8H2O as starting materials, and NH3·H2O as a precipitant. The composite powders which match with zirconium oxide particle size and evenly distribute can are advantageous to the formation of metastable t-ZrO2and restrain the grain growth as the additive of modified sizing nozzle. Chemical composition, mineral phase, particle size distribution and micro-morphology of the composite powders were investigated by X-ray fluorescence instrument, X-ray diffractometer, laser particle size analyzer and scanning electron microscope. Research showed that under the process that the concentration of MgCl2solution 0.2 mol/L, AlCl3and ZrOCl2solution concentration 0.5 mol/L, the pH controlled between 10 ~ 11, PEG as the surfactant, drying at 70°C±5°C, heat treatment temperature at 800°C for 3h, particle size distribution of MgO-Al2O3-ZrO2composite powders were: d10= 1.28 μm, d50= 4.65μm, d90= 11.13μm (MgO 10%); d10= 1.15μm, d50= 5.80μm, d90= 15.13μm (MgO 15%);d10= 1.21μm, d50= 6.59μm, d90= 16.87μm (MgO 20%). With the rising of heat treatment temperature, the crystallization degree of composite powders increased, at 800 °C a small amount of t - ZrO2precipitated, meanwhile MgO and Al2O3are still in the amorphous phase. The MgO-A12O3-ZrO2composite powders under this condition have high reactivity and uniform distribution.


Sign in / Sign up

Export Citation Format

Share Document