Effect of effective grain size and grain boundary of large misorientation on upper shelf energy in pipeline steels

2016 ◽  
Vol 31 (3) ◽  
pp. 606-610 ◽  
Author(s):  
Xiaoli Zhang ◽  
Zhiqiang Jiang ◽  
Shixian Li ◽  
Jiwei Fan
2005 ◽  
Vol 36 (8) ◽  
pp. 2107-2114 ◽  
Author(s):  
Byoungchul Hwang ◽  
Yang Gon Kim ◽  
Sunghak Lee ◽  
Young Min Kim ◽  
Nack J. Kim ◽  
...  

2010 ◽  
Vol 168-170 ◽  
pp. 1581-1585 ◽  
Author(s):  
Dong Ying Xu ◽  
Hao Yu

Orientations distribution between grains of two high grade pipeline steels were investigated by electron back-scattered diffraction (EBSD). Then the percentage of low-angle grain boundaries was studied qualitatively to analyze the effect of low-angle grain boundaries on the yield-strength ratio of high grade pipeline steels. From the mode of coordinate deformation and the ability to resist deformation by the grain boundaries, the results show that when the effective grain size are almost the same, the pipeline steel which has the smaller percentage of low-angle grain boundaries, the larger difference between the yield strength and tensile strength, which makes the yield-strength ratio of pipeline steel lower.


2020 ◽  
Vol 58 (5) ◽  
pp. 293-303
Author(s):  
Seung-Wan Lee ◽  
Sang-In Lee ◽  
Byoungchul Hwang

In this study the correlation between bainitic microstructure and the low-temperature toughness of high-strength API pipeline steels was discussed in terms of crack initiation and propagation in the microstructure. Three types of API pipeline steels with different bainitic microstructures were fabricated using varying alloying elements and thermo-mechanical processing conditions, and then their microstructure was characterized by optical and scanning electron microscopy, and electron backscatter diffraction (EBSD). In particular, the effective grain size and microstructure fraction of the steels were quantitatively measured by EBSD analysis. Although all the steels were composed of polygonal ferrite (PF), and complex bainitic microstructures such as acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), they had different effective grain sizes and microstructure fraction, depending on the alloying elements and thermomechanical processing conditions. Charpy impact test results showed that when the martensite-austenite constituent fraction was lowest, it resulted in higher upper-shelf energy, and absorbed energy at room temperature due to the decrease in crack initiation. In contrast, excellent low-temperature toughness, such as lower ductile-brittle transition temperature and higher absorbed energy at low temperatures, could be achieved with a bainitic microstructure with fine effective grain size and high fraction of high-angle grain boundaries, which act as obstacles to prevent cleavage crack propagation.


1998 ◽  
Vol 539 ◽  
Author(s):  
J.W. Morris

AbstractThe models that have been successfully used to control the ductile-brittle transition in high strength structural steels are qualitative in nature, and address the microstructural control of the mechanisms of brittle fracture. The basic idea is incorporated in the “Yoffee diagram”, which dates from the 1920's and attributes the ductile-brittle transition to the competition between deformation and fracture; the more difficult brittle fracture becomes, the lower the temperature at which ductile processes dominate. There are two important brittle fracture modes: intergranular separation and transgranular cleavage. The intergranular mode is usually due to chemical contamination, and is addressed by eliminating or gettering the contaminating species. There are also examples of brittle fracture that is due to inherent grain boundary weakness. In this case the failure mode is overcome by adding beneficial species (glue) to the grain boundary. Transgranular cleavage is made more difficult by refining the effective grain size. In high strength steel this is done by refining the prior austenite grain size, by interspersing islands of metastable austenite that transform martensitically under plastic strain, or by disrupting the crystallographic alignment of ferrite grains or martensite laths. The latter mechanism offers intriguing possibilities for future steels with exceptional toughness.


2011 ◽  
Vol 682 ◽  
pp. 211-216
Author(s):  
Rong Zhu ◽  
Jin Qiang Liu ◽  
Jing Tao Wang ◽  
Ping Huang ◽  
Yan Jun Wu ◽  
...  

Equal channel angular pressing (ECAP) has been used to refine the grain size of Mg-12Gd-3Y-0.5Zr billet at about 400°C because it lacks sufficient ductility at low temperatures. However, <0001> peak intensity is oriented about 50º from the extrusion direction, which facilitates the basal slip, and decreases the yield strength. We have employed conventional extrusion at 300°C following ECAP to modify the texture in hard orientation. This two-step process makes use of two strengthening mechanisms a) grain boundary strengthening due to small grain size, and (b) texture strengthening due to grains in hard orientation. The samples processed by the two-step show the yield and ultimate strength to 283 and 308 MPa, respectively. Moreover, the activation of <c+a> slip and fine grains resulted from the ECAP helped to maintain a good ductility even after significant straining from conventional extrusion.


2004 ◽  
Vol 11 (02) ◽  
pp. 173-178 ◽  
Author(s):  
WEN LI ◽  
D. Y. LI

The Kelvin probe is a sophisticated instrument which is very sensitive to changes in surface conditions, such as deformation, texture, phase transformation and contamination. Efforts have been made to use this technique to diagnose wear. In this study, the effect of the grain boundary (GB) on the electron work function (EWF) was examined with the aim of investigating the contribution of changes in grain size to total changes in the EWF during wear. Copper and aluminum were studied as examples. It was demonstrated that the EWF dropped in the vicinity of GB's and the mean EWF decreased as the grain size decreased. The mechanism responsible for the changes in the EWF with respect to the GB is discussed.


1992 ◽  
Vol 7 (7) ◽  
pp. 1751-1761 ◽  
Author(s):  
J. Eckert ◽  
J.C. Holzer ◽  
C.E. Krill ◽  
W.L. Johnson

Nanocrystalline fcc metals have been synthesized by mechanical attrition. The crystal refinement and the development of the microstructure have been investigated in detail by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The deformation process causes a decrease of the grain size of the fcc metals to 6–22 nm for the different elements. The final grain size scales with the melting point and the bulk modulus of the respective metal: the higher the melting point and the bulk modulus, the smaller the final grain size of the powder. Thus, the ultimate grain size achievable by this technique is determined by the competition between the heavy mechanical deformation introduced during milling and the recovery behavior of the metal. X-ray diffraction and thermal analysis of the nanocrystalline powders reveal that the crystal size refinement is accompanied by an increase in atomic-level strain and in the mechanically stored enthalpy in comparison to the undeformed state. The excess stored enthalpies of 10–40% of the heat of fusion exceed by far the values known for conventional deformation processes. The contributions of the atomic-level strain and the excess enthalpy of the grain boundaries to the stored enthalpies are critically assessed. The kinetics of grain growth in the nanocrystalline fcc metals are investigated by thermal analysis. The activation energy for grain boundary migration is derived from a modified Kissinger analysis, and estimates of the grain boundary enthalpy are given.


Author(s):  
Ryo Oishi ◽  
Koji ASAKA ◽  
Bolotov Leonid ◽  
Noriyuki Uchida ◽  
Masashi Kurosawa ◽  
...  

Abstract A simple method to form ultra-thin (< 20 nm) semiconductor layers with a higher mobility on a 3D-structured insulating surface is required for next-generation nanoelectronics. We have investigated the solid-phase crystallization of amorphous Ge layers with thicknesses of 10−80 nm on insulators of SiO2 and Si3N4. We found that decreasing the Ge thickness reduces the grain size and increases the grain boundary barrier height, causing the carrier mobility degradation. We examined two methods, known effective to enhance the grain size in the thicker Ge (>100 nm). As a result, a relatively high Hall hole mobility (59 cm2/Vs) has been achieved with a 20-nm-thick polycrystalline Ge layer on Si3N4, which is the highest value among the previously reported works.


Sign in / Sign up

Export Citation Format

Share Document