Role of Wnt/β-Catenin Pathway in the Arterial Medial Calcification and Its Effect on the OPG/RANKL System

2019 ◽  
Vol 39 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Bin Nie ◽  
Shao-ying Zhang ◽  
Si-ming Guan ◽  
Shao-qiong Zhou ◽  
Xin Fang
2009 ◽  
Vol 75 (12) ◽  
pp. 1297-1307 ◽  
Author(s):  
Mohga M. El-Abbadi ◽  
Ashwini S. Pai ◽  
Elizabeth M. Leaf ◽  
Hsueh-Ying Yang ◽  
Bryan A. Bartley ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1713 ◽  
Author(s):  
Owais M. Bhat ◽  
Xinxu Yuan ◽  
Sarah Camus ◽  
Fadi N. Salloum ◽  
Pin-Lan Li

Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1−/− mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1−/− mice as compared to their wild-type littermates. Besides, Mcoln1−/− mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1−/− mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1−/− mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.


Life Sciences ◽  
2013 ◽  
Vol 93 (17) ◽  
pp. 646-653 ◽  
Author(s):  
Che Yu ◽  
Bing Chen ◽  
TingTing Zhao ◽  
Rong Wang ◽  
Javed Akhtar ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fang-Zheng Wang ◽  
Hong Zhou ◽  
Hong-Yu Wang ◽  
Hang-Bing Dai ◽  
Qing Gao ◽  
...  

Abstract Background Arterial medial calcification (AMC) is associated with a high incidence of cardiovascular risk in patients with type 2 diabetes and chronic kidney disease. Here, we tested whether hydrogen sulfide (H2S) can prevent AMC in rats with diabetic nephropathy (DN). Methods DN was induced by a single injection of streptozotocin and high-fat diet (45% kcal as fat) containing 0.75% adenine in Sprague–Dawley rats for 8 weeks. Results Rats with DN displayed obvious calcification in aorta, and this was significantly alleviated by Sodium Hydrosulfide (NaHS, a H2S donor, 50 μmol/kg/day for 8 weeks) treatment through decreasing calcium and phosphorus content, ALP activity and calcium deposition in aorta. Interestingly, the main endogenous H2S generating enzyme activity and protein expression of cystathionine-γ-lyase (CSE) were largely reduced in the arterial wall of DN rats. Exogenous NaHS treatment restored CSE activity and its expression, inhibited aortic osteogenic transformation by upregulating phenotypic markers of smooth muscle cells SMα-actin and SM22α, and downregulating core binding factor α-1 (Cbfα-1, a key factor for bone formation), protein expressions in rats with DN when compared to the control group. NaHS administration also significantly reduced Stat3 activation, cathepsin S (CAS) activity and TGF-β1 protein level, and improved aortic elastin expression. Conclusions H2S may have a clinical significance for treating AMC in people with DN by reducing Stat3 activation, CAS activity, TGF-β1 level and increasing local elastin level.


Sign in / Sign up

Export Citation Format

Share Document