scholarly journals Is There a Link between Orcadian Clock Protein PERIOD 3 (PER3) (rs57875989) Variant and the Severity of COVID-19 Infection?

Author(s):  
Gozde Yesil Sayin ◽  
Sacide Pehlivan ◽  
Istemi Serin ◽  
Alpay Medetalibeyoglu ◽  
Murat Kose ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuya Yoshida ◽  
Naoya Matsunaga ◽  
Takaharu Nakao ◽  
Kengo Hamamura ◽  
Hideaki Kondo ◽  
...  

AbstractDysfunction of the circadian clock has been implicated in the pathogenesis of cardiovascular disease. The CLOCK protein is a core molecular component of the circadian oscillator, so that mice with a mutated Clock gene (Clk/Clk) exhibit abnormal rhythms in numerous physiological processes. However, here we report that chronic kidney disease (CKD)-induced cardiac inflammation and fibrosis are attenuated in Clk/Clk mice even though they have high blood pressure and increased serum angiotensin II levels. A search for the underlying cause of the attenuation of heart disorder in Clk/Clk mice with 5/6 nephrectomy (5/6Nx) led to identification of the monocytic expression of G protein-coupled receptor 68 (GPR68) as a risk factor of CKD-induced inflammation and fibrosis of heart. 5/6Nx induces the expression of GPR68 in circulating monocytes via altered CLOCK activation by increasing serum levels of retinol and its binding protein (RBP4). The high-GPR68-expressing monocytes have increased potential for producing inflammatory cytokines, and their cardiac infiltration under CKD conditions exacerbates inflammation and fibrosis of heart. Serum retinol and RBP4 levels in CKD patients are also sufficient to induce the expression of GPR68 in human monocytes. Our present study reveals an uncovered role of monocytic clock genes in CKD-induced heart failure.


2006 ◽  
Vol 401 (1-2) ◽  
pp. 44-48 ◽  
Author(s):  
Keigo Nishii ◽  
Iori Yamanaka ◽  
Maya Yasuda ◽  
Yota B. Kiyohara ◽  
Yoko Kitayama ◽  
...  

2008 ◽  
Vol 23 (1) ◽  
pp. 26-36 ◽  
Author(s):  
J.D. Alvarez ◽  
Amanda Hansen ◽  
Teri Ord ◽  
Piotr Bebas ◽  
Patrick E. Chappell ◽  
...  

2021 ◽  
Author(s):  
Jing Jin ◽  
Yumeng Liu ◽  
Jing Huang ◽  
Dong Zhang ◽  
Jian Ge ◽  
...  

Abstract Objective A variety of circadian patterns of blood pressure after ischemic stroke in patients with essential hypertension appear to be a potential risk of stroke recurrence, but the mechanism is still unclear. This study intends to reveal the changes in blood pressure rhythm and circadian clock protein expression levels in spontaneously hypertensive rats (SHR) after ischemia-reperfusion, and the relationship between the two. Methods Using the SHR middle cerebral artery occlusion experimental model, the systolic blood pressure was continuously monitored for 24 hours after the operation to observe the blood pressure rhythm. The rat tail vein blood was taken every 3h, and the serum CLOCK, BMAL1, PER1 and CRY1 protein expression levels were detected by Elisa. Pearson correlation analysis counted the relationship between SHR blood pressure rhythm and circadian clock protein fluctuation after ischemia-reperfusion. Results The proportion of abnormal blood pressure patterns in the SHR + tMCAO group was significantly higher than that in the SHR group, the serum CLOCK expression was relatively constant, and the circadian rhythm of BMAL1, PER1 and CRY1 protein expression changed significantly. Pearson analysis showed that PER1 protein level was negatively correlated with dipper (r = -0.565, P = 0.002) and extreme-dipper (r = -0.531, P = 0.001) blood pressure, and was significantly positively correlated with non-dipper blood pressure (r = 0.620, P < 0.001). Conclusion The rhythm pattern of blood pressure after ischemia-reperfusion in SHR is obviously disordered, and it is closely related to the regulation of Per1 gene.


Thorax ◽  
2018 ◽  
Vol 74 (4) ◽  
pp. 413-416 ◽  
Author(s):  
Peter S Cunningham ◽  
Robert Maidstone ◽  
Hannah J Durrington ◽  
Rajamayier V Venkateswaran ◽  
Marcelo Cypel ◽  
...  

The importance of circadian factors in managing patients is poorly understood. We present two retrospective cohort studies showing that lungs reperfused between 4 and 8 AM have a higher incidence (OR 1.12; 95% CI 1.03 to 1.21; p=0.01) of primary graft dysfunction (PGD) in the first 72 hours after transplantation. Cooling of the donor lung, occurring during organ preservation, shifts the donor circadian clock causing desynchrony with the recipient. The clock protein REV-ERBα directly regulates PGD biomarkers explaining this circadian regulation while also allowing them to be manipulated with synthetic REV-ERB ligands.


Sign in / Sign up

Export Citation Format

Share Document