Impact of anthropogenic activities on vegetation dynamics in a reservoir area: model establishment and a case study of Longkaikou Reservoir in China

2021 ◽  
Vol 18 (7) ◽  
pp. 1823-1836
Author(s):  
Wei Yang ◽  
Jun Pei ◽  
Yan-peng Cai ◽  
Yu-jun Yi
2021 ◽  
Vol 13 (15) ◽  
pp. 8490
Author(s):  
Hongjie Peng ◽  
Lei Hua ◽  
Xuesong Zhang ◽  
Xuying Yuan ◽  
Jianhao Li

In recent years, ecosystem service values (ESV) have attracted much attention. However, studies that use ecological sensitivity methods as a basis for predicting future urban expansion and thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological sensitive zone has been identified in Three Gorges reservoir area; it accounts for about 35.86% of the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million. Jiulongpo, Banan and Shapingba had the highest ESV losses.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 314
Author(s):  
Petros Tsiantas ◽  
Evangelia N. Tzanetou ◽  
Helen Karasali ◽  
Konstantinos M. Kasiotis

Soil constitutes a central environmental compartment that, due to natural and anthropogenic activities, is a recipient of several contaminants. Among them, organochlorine pesticides are of major concern, even though they have been banned decades ago in the European Union, due to their persistence and the health effects they can elicit. In the presented work, a gas chromatographic tandem mass spectrometric (GC-MS/MS) developed method was applied to soil samples after the suspected and potential use of formulations containing organochlorine active substance. One soil sample was positive to dieldrin at 0.018 mg kg−1. Predicted environmental concentration in soil (PECsoil) considering a single application of this active substance potentially attributed the finding in its past use. The subsequent health risk assessment showed negligible non-carcinogenic risk and tolerable carcinogenic risk. The latter signifies that repetitive and prolonged sampling can unveil the pragmatic projection of persistent chemicals’ residues in the soil.


2016 ◽  
Vol 32 ◽  
pp. 200-210 ◽  
Author(s):  
Bogdan Mihai ◽  
Constantin Nistor ◽  
Liviu Toma ◽  
Ionuţ Săvulescu

2008 ◽  
Vol 12 (6) ◽  
pp. 1257-1271 ◽  
Author(s):  
N. Montaldo ◽  
J. D. Albertson ◽  
M. Mancini

Abstract. Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFTs, e.g. grass and woody vegetation) competing for water. Mediterranean ecosystems are also commonly characterized by strong inter-annual rainfall variability, which influences the distributions of PFTs that vary spatially and temporally. An extensive field campaign in a Mediterranean setting was performed with the objective to investigate interactions between vegetation dynamics, soil water budget and land-surface fluxes in a water-limited ecosystem. Also a vegetation dynamic model (VDM) is coupled to a 3-component (bare soil, grass and woody vegetation) Land surface model (LSM). The case study is in Orroli, situated in the mid-west of Sardegna within the Flumendosa river basin. The landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. Land surface fluxes, soil moisture and vegetation growth were monitored during the May 2003–June 2006 period. Interestingly, hydrometeorological conditions of the monitored years strongly differ, with dry and wet years in turn, such that a wide range of hydrometeorological conditions can be analyzed. The coupled VDM-LSM model is successfully tested for the case study, demonstrating high model performance for the wide range of eco-hydrologic conditions. Results demonstrate also that vegetation dynamics are strongly influenced by the inter-annual variability of atmospheric forcing, with grass leaf area index changing significantly each spring season according to seasonal rainfall amount.


2020 ◽  
Vol 10 (2) ◽  
pp. 116-125
Author(s):  
Georgina Johnson ◽  
Wen San Hii ◽  
Samuel Lihan ◽  
Meng Guan Tay

The presence of microplastics in aquatic systems is mainly due to the anthropogenic activities such as domestic waste dumping. Undeniably, rivers either in urban or suburban areas are always a waste dumpling sites from the surrounding residences. Thus, the purpose of this study was to determine the relationship between microplastic abundance and different degree of urbanization across Kuching in Sarawak. Three sampling locations with different degrees of urbanisation had been studied across Kuching. A total of 137 pieces of microplastics were collected along the study and analysed using stereoscopic microscope for the shape identification and FTIR spectrophotometer for functional groups present in the microplastics. Filament was the most abundant microplastics shape found, whereas the IR results showed that ethylenevinylacetate (9%), polyamides or nylon (15%), polypropylene (42%), poly(methylmethacrylate) (16%) and polystyrene (18%) were found in the study. The most abundant microplastics in the water samples was polypropylene (42%), whereas ethylenevinylacetate (9%) was the least. The degree of urbanisation does not directly relate to the microplastic present in the river system in Kuching City, but the anthropogenic activity is the main factor that affecting the microplastic abundance in the river.   Keywords: anthropologenic activity, FTIR, microplastics, polymer identification, urban, sub-urban


2016 ◽  
Vol 112 (1-2) ◽  
pp. 271-290 ◽  
Author(s):  
Giuseppina Balassone ◽  
Giuseppe Aiello ◽  
Diana Barra ◽  
Piergiulio Cappelletti ◽  
Alberto De Bonis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document