scholarly journals Annual and seasonal changes of the air temperature with altitude in the Upper Dades valley, High Atlas, Morocco

Author(s):  
Elwira Żmudzka ◽  
Maciej Dłużewski ◽  
Maciej Dąbski ◽  
Kamil Leziak ◽  
Elżbieta Rojan

AbstractThe purpose of this study is to determine the size of air temperature changes with altitude in the mountains of the arid zone, on the example of the Upper Dades valley (High Atlas, Morocco). The air temperature change with altitude was determined on the basis of 5 years data from three meteorological stations. The analysis was carried out on an annual and seasonal basis. The annual and daily variations of thermal gradients between pairs of stations were also determined. It was found that the average thermal gradient in the Upper Dades valley was -1.02°C per 100 m. The highest values of the thermal gradient occur in winter and the lowest in summer. In winter, the thermal gradient was characterized by the greatest variability. Minima of the daily variation of air temperature gradients were observed in early morning hours and maxima around midday. In the lower part of the valley, air temperature inversion frequently developed between 10 AM and 3 PM UTC. The obtained results show high thermal gradients in the mountains of the arid zone, with their annual amplitude increasing in the lower parts of the valley. The instantaneous values of the gradients were significantly modified by the supply of latent heat and the occurrence of dust storms. It has been shown that the advection factor plays an important role in shaping large gradient values. The study contains novel results of thermal gradient measurements in high mountains of arid zone.

Author(s):  
O. M. Katz

The swelling of irradiated UO2 has been attributed to the migration and agglomeration of fission gas bubbles in a thermal gradient. High temperatures and thermal gradients obtained by electron beam heating simulate reactor behavior and lead to the postulation of swelling mechanisms. Although electron microscopy studies have been reported on UO2, two experimental procedures have limited application of the results: irradiation was achieved either with a stream of inert gas ions without fission or at depletions less than 2 x 1020 fissions/cm3 (∼3/4 at % burnup). This study was not limited either of these conditions and reports on the bubble characteristics observed by transmission and fractographic electron microscopy in high density (96% theoretical) UO2 irradiated between 3.5 and 31.3 x 1020 fissions/cm3 at temperatures below l600°F. Preliminary results from replicas of the as-polished and etched surfaces of these samples were published.


Author(s):  
Christof Mast ◽  
Friederike Möller ◽  
Moritz Kreysing ◽  
Severin Schink ◽  
Benedikt Obermayer ◽  
...  

How does inanimate matter become transformed into animate matter? Living systems evolve by replication and selection at the molecular level and this chapter considers how to establish a synthetic, minimal system that can support molecular evolution and thus life. Molecular evolution cannot be explained by starting with high concentrations of activated chemicals that react toward their chemical equilibrium; persistent non-equilibria are required to maintain continuous reactivity and we especially consider thermal gradients as an early driving force for Darwinian molecular evolution. The temperature difference across water-filled compartments implements a laminar fluid convection with periodic temperature oscillations that allow for the melting and replication of DNA. Simultaneously, dissolved molecules are moved along the thermal gradient by an effect called thermophoresis. The combined result is an efficient molecule trap that exponentially favors long over short DNA and thus maintains complexity. Future experiments will reveal how thermal gradients could actively drive the Darwinian process of replication and selection.


2020 ◽  
Vol 45 (4) ◽  
pp. 319-332
Author(s):  
Xiaoyu Chen ◽  
Ruquan Liang ◽  
Yong Wang ◽  
Ziqi Xia ◽  
Lichun Wu ◽  
...  

AbstractThe effect of the temperature gradient on the Soret coefficient in n-pentane/n-decane (n-C5/n-C10) mixtures was investigated using non-equilibrium molecular dynamics (NEMD) with the heat exchange (eHEX) algorithm. n-Pentane/n-decane mixtures with three different compositions (0.25, 0.5, and 0.75 mole fractions, respectively) and the TraPPE-UA force field were used in computing the Soret coefficient ({S_{T}}) at 300 K and 1 atm. Added/removed heat quantities (ΔQ) of 0.002, 0.004, 0.006, 0.008, and 0.01 kcal/mol were employed in eHEX processes in order to study the effect of different thermal gradients on the Soret coefficient. Moreover, a phenomenological description was applied to discuss the mechanism of this effect. Present results show that the Soret coefficient values firstly fluctuate violently and then become increasingly stable with increasing ΔQ (especially in the mixture with a mole fraction of 0.75), which means that ΔQ has a smaller effect on the Soret coefficient when the temperature gradient is higher than a certain thermal gradient. Thus, a high temperature gradient is recommended for calculating the Soret coefficient under the conditions that a linear response and constant phase are ensured in the system. In addition, the simulated Soret coefficient obtained at the highest ΔQ within three different compositions is in great agreement with experimental data.


2010 ◽  
Vol 10 (2) ◽  
pp. 383-394 ◽  
Author(s):  
A. Bartzokas ◽  
V. Kotroni ◽  
K. Lagouvardos ◽  
C. J. Lolis ◽  
A. Gkikas ◽  
...  

Abstract. The meteorological model MM5 is applied operationally for the area of north-western Greece for one-year period (1 June 2007–31 May 2008). The model output is used for daily weather forecasting over the area. An early warning system is developed, by dividing the study area in 16 sub-regions and defining specific thresholds for issuing alerts for adverse weather phenomena. The verification of the model is carried out by comparing the model results with observations from three automatic meteorological stations. For air temperature and wind speed, correlation coefficients and biases are calculated, revealing that there is a significant overestimation of the early morning air temperature. For precipitation amount, yes/no contingency tables are constructed for 4 specific thresholds and some categorical statistics are applied, showing that the prediction of precipitation in the area under study is generally satisfactory. Finally, the thunderstorm warnings issued by the system are verified against the observed lightning activity.


Author(s):  
Karamoko Sanogo ◽  
Birhanu B. Zemadim ◽  
Souleymane Sanogo ◽  
Ashatu Abdulkadiri ◽  
Abdramane BA

Forests constitute a key component of the Earth system but the sustainability of the forest reserves in the semi-arid zone is a real concern since its vegetation is very sensitive to the climate fluctuation. The understanding of the mechanisms for the interaction vegetation-climate is poorly studied in the context of African Sahel. In this study, the characteristics of the vegetation response to the fluctuations of precipitation and temperature is determined for the forest reserve of Fina. Rainfall estimates, air temperature and NDVI are used to establish the lag correlations between fluctuations of vegetation and climate variables at both seasonal and interannual bases. Results shows increasing tendency of NDVI started from the 1990s coinciding the recovery of the rainfall from the 1980s drought and the obtained correlation(r=0.66) is statistically significant (pvalue<0.01). The strongest responses of vegetation to rainfall and temperature fluctuations were found after 30 and 15 days, respectively. Moreover, at shorter time lag (e.g. 15 days) more pronounced vegetation responses to both rainfall and temperature were found in agricultural dominated land while at longer time lag (e.g. 30 days) stronger response was observed in Bare dominated land. The vegetation response to the climate fluctuation is modulated by the land use/cover dynamics. Keywords: NDVI, Rainfall, Air temperature, vegetation response, Fina Forest Reserve, Mali.


1999 ◽  
Vol 65 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Akira Hiraishi ◽  
Taichi Umezawa ◽  
Hiroyuki Yamamoto ◽  
Kenji Kato ◽  
Yonosuke Maki

ABSTRACT The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile.Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq ), and bioenergetic divergence index (BDq ). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses ofMDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.


2004 ◽  
Vol 43 (11) ◽  
pp. 1635-1647 ◽  
Author(s):  
C. David Whiteman ◽  
Stefan Eisenbach ◽  
Bernhard Pospichal ◽  
Reinhold Steinacker

Abstract Tethered balloon soundings from two sites on the floor of a 1-km-diameter limestone sinkhole in the eastern Alps are compared with pseudovertical temperature “soundings” from three lines of temperature dataloggers on the basin's northwest, southwest, and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudovertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest-altitude saddle. On a windy night, standard deviations increased to 1°–2°C. After sunrise, the varying exposures of the dataloggers to sunlight made the pseudovertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high-static-stability conditions suggests that sidewall soundings can be used to monitor temperatures, temperature gradients, and temperature inversion evolution in the sinkhole. Sidewall soundings can produce more frequent profiles at lower cost than can tethersondes or rawinsondes, and extension of these findings to other enclosed or semienclosed topographies may enhance future basic meteorological research or support applications studies in agriculture, forestry, air pollution, and land use planning.


CATENA ◽  
2020 ◽  
Vol 190 ◽  
pp. 104530
Author(s):  
Elżbieta Rojan ◽  
Maciej Dłużewski ◽  
Kazimierz Krzemień

1989 ◽  
Vol 03 (14) ◽  
pp. 1053-1060 ◽  
Author(s):  
A. J. BOURDILLON ◽  
N. X. TAN ◽  
N. SAVVIDES ◽  
J. SHARP

Texture growth in incongruently melting ceramic superconductor materials, such as YBa 2 Cu 3 O 7−x, can be combined with zone refinement in thermal gradients to increase critical current densities. In gravity aided texture growth (GATEG), a vertical thermal gradient is used with downward motion of the partially molten specimen (relative to the furnace) so that the molten phase recrystallizes with grain growth.


Sign in / Sign up

Export Citation Format

Share Document