Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

2018 ◽  
Vol 49 (7) ◽  
pp. 3122-3132 ◽  
Author(s):  
Renu Kumari ◽  
Jyotsna Dutta Majumdar
MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Wear ◽  
2009 ◽  
Vol 266 (9-10) ◽  
pp. 995-1002 ◽  
Author(s):  
K. Venkateswarlu ◽  
V. Rajinikanth ◽  
T. Naveen ◽  
Dhiraj Prasad Sinha ◽  
Atiquzzaman ◽  
...  

2021 ◽  
pp. 108589
Author(s):  
Xuesha Li ◽  
Qianqian Shen ◽  
Yu Zhang ◽  
Lili Wang ◽  
Chaoyin Nie

2012 ◽  
Vol 426 ◽  
pp. 339-343 ◽  
Author(s):  
Qiu Lin Niu ◽  
X.J. Cai ◽  
Zhi Qiang Liu ◽  
Ming Chen ◽  
Qing Long An

As a typical high strength material, titanium alloy Ti-6Al-2Sn-4Zr- 2Mo-0.1Si (TA19) is used to manufacturing the compressor power-brake of aircraft engine and the aircraft skin. All the machining experiments were carried out on a CNC-milling center under the stable conditions of cutting speed, feed rate, and depth of cut. The performance and wear mechanisms of coated- and uncoated carbide tools have been investigated in this paper to evaluate the machinability of TA19 in face milling. The three tools used were PVD-TiN+TiAlN, CVD-TiN+Al2O3+TiCN and uncoated carbide inserts. The results indicated that PVD coating had the best performance than other tool materials in milling titanium alloy TA19, and the cutting force and the wear value were the smallest than that for CVD-coated and uncoated tools. The failure types of PVD-, CVD- and uncoated inserts were the crater wear and micro tipping; the crater wear and tipping; tipping. Abrasive wear and adherent wear were the predominant mechanism of PVD-TiN+TiAlN carbide insert in face milling TA19 alloy. For CVD- and uncoated carbide, adherent wear was predominant.


Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han

TC4, which is one of the most widely used titanium alloy, is frequently used in biomedical field due to its biocompatible. In this work, selective laser melting (SLM) was used to manufacture TC4 parts and the printed parts were heat-treated using laser rescanning technology. The experimental results showed that laser rescanning had a high impact on the quality of SLMed part, and a different performance on wear resistance can be found on the basis. It can be seen that the volume porosity of the sample was 7.6 ± 0.5% without using any further processing technology. The volume porosity of the sample processed using laser rescanning strategy was decreased and the square-framed rescanning strategy had a relative optimal volume porosity (1.5 ± 0.3%) in all these five samples. With the further decreasing of volume porosity, the wear resistance decreased at the same time. As its excellent bio-tribological properties, the square-framed rescanning may be a potential suitable strategy to forming TC4 which used in human body.


Sign in / Sign up

Export Citation Format

Share Document