Transglutaminase-mediated incorporation of whey protein as fat replacer into the formulation of reduced-fat Iranian white cheese: physicochemical, rheological and microstructural characterization

2018 ◽  
Vol 12 (4) ◽  
pp. 2416-2425 ◽  
Author(s):  
Erfan Danesh ◽  
Mostafa Goudarzi ◽  
Hossein Jooyandeh
Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1599
Author(s):  
Yaosong Wang ◽  
Youling L. Xiong

Protein-based biodegradable packaging films are of environmental significance. The effect of oxidized ferulic acid (OFA)/tannic acid (OTA) on the crosslinking and film-forming properties of whey protein isolate (WPI) was investigated. Both of the oxidized acids induced protein oxidation and promoted WPI crosslinking through the actions of quinone carbonyl and protein sulfhydryl, and amino groups. OTA enhanced the tensile strength (from 4.5 MPa to max 6.7 MPa) and stiffness (from 215 MPa to max 376 MPa) of the WPI film, whereas OFA significantly increased the elongation at break. The water absorption capability and heat resistance of the films were greatly improved by the addition of OTA. Due to the original color of OTA, the incorporation of OTA significantly reduced light transmittance of the WPI film (λ 200–600 nm) as well as the transparency, whereas no significant changes were induced by the OFA treatment. Higher concentrations of OTA reduced the in vitro digestibility of the WPI film, while the addition of OFA had no significant effect. Overall, these two oxidized polyphenols promoted the crosslinking of WPI and modified the film properties, with OTA showing an overall stronger efficacy than OFA due to more functional groups available.


Author(s):  
Sylwia Chudy ◽  
Agnieszka Makowska ◽  
Mirosława Krzywdzińska‐Bartkowiak ◽  
Michał Piątek ◽  
Marta Henriques ◽  
...  
Keyword(s):  

2016 ◽  
Vol 40 (2) ◽  
pp. 144 ◽  
Author(s):  
Abubakar Abubakar

This research was conducted to investigate the quality of low-fat white cheese produced using raw material of modified milk. Five treatments applied were (A1) Using reduced fat (60%) milk, (A2) Using emulsion of corn oil in skim milk (replacing milk fat with corn oil), (A3) Using emulsion of corn oil in skim milk and addition of whey protein concentrate (replacing milk fat with corn oil and the addition of whey protein concentrate=WPC), (A4) Using skim milk and water emulsion oil in water, and (A5) replacing milk fat with corn oil and the addition of probiotic (Lactobacillus casei). Each treatment was replicated three times. The selected that skim milk in corn oil emulsion with the addition of probiotics, the results showed had cheese quality characteristics as follow: yield 12.94±0.16%, hardnes 48.07±10.12 g, softness 8.51±0.54 kg/s, moisture content 50.37±1.60%, ash content 7.38±1.75% (dry matter), fat content 41.06±6.07% (dry matter), protein content 37.85±3.25% (dry matter), phosphorus content 346.62±25.61 mg/100g (dry matter), calcium content 860.78±87.91 mg/100g (dry matter), white color, regular texture, not flavorfull, salty taste, soft texture, elastic, ordinary preference acceptance.


2007 ◽  
Vol 90 (9) ◽  
pp. 4058-4070 ◽  
Author(s):  
J. Rahimi ◽  
A. Khosrowshahi ◽  
A. Madadlou ◽  
S. Aziznia

2016 ◽  
Vol 52 ◽  
pp. 403-414 ◽  
Author(s):  
Kun Liu ◽  
Yujie Tian ◽  
Markus Stieger ◽  
Erik van der Linden ◽  
Fred van de Velde

2004 ◽  
Vol 67 (8) ◽  
pp. 1765-1769 ◽  
Author(s):  
KATHLEEN A. GLASS ◽  
ERIC A. JOHNSON

Ingredients used in the manufacture of reduced-fat process cheese products were screened for their ability to inhibit growth of Clostridium botulinum serotypes A and B in media. Reinforced clostridial medium (RCM) supplemented with 0,0.5, 1, 2, 3, 5, or 10% (wt/vol) of various ingredients, including a carbohydrate-based fat replacer, an enzyme-modified cheese (EMC) derived from a Blue cheese, sweet whey, modified whey protein, or whey protein concentrate, did not inhibit botulinal growth and toxin production when stored at 30°C for 1 week. In contrast, RCM supplemented with 10% soy-based flavor enhancer, 10% Parmesan EMC, or 5 or 10% Cheddar EMC inhibited botulinal toxin production in media for at least 6 weeks of storage at 30°C. Subsequent trials revealed that the antibotulinal effect varied significantly among 13 lots of EMC and that the antimicrobial effect was not correlated with the pH or water activity of the EMC.


Sign in / Sign up

Export Citation Format

Share Document