An assessment of precipitation and surface air temperature over China by regional climate models

2016 ◽  
Vol 10 (4) ◽  
pp. 644-661 ◽  
Author(s):  
Xueyuan Wang ◽  
Jianping Tang ◽  
Xiaorui Niu ◽  
Shuyu Wang
2020 ◽  
Author(s):  
Seok-Woo Shin ◽  
Dong-Hyun Cha ◽  
Taehyung Kim ◽  
Gayoung Kim ◽  
Changyoung Park ◽  
...  

<p>Extreme temperature can have a devastating impact on the ecological environment (i.e., human health and crops) and the socioeconomic system. To adapt to and cope with the rapidly changing climate, it is essential to understand the present climate and to estimate the future change in terms of temperature. In this study, we evaluate the characteristics of near-surface air temperature (SAT) simulated by two regional climate models (i.e., MM5 and HadGEM3-RA) over East Asia, focusing on the mean and extreme values. To analyze extreme climate, we used the indices for daily maximum (Tmax) and minimum (Tmin) temperatures among the developed Expert Team on Climate Change Detection and Indices (ETCCDI) indices. In the results of the CORDEX-East Asia phase Ⅰ, the mean and extreme values of SAT for DJF (JJA) tend to be colder (warmer) than observation data over the East Asian region. In those of CORDEX-East Asia phase Ⅱ, the mean and extreme values of SAT for DJF and JJA have warmer than those of the CORDEX-East Asia phase Ⅰ except for those of HadGEM3-RA for DJF. Furthermore, the Extreme Temperature Range (ETR, maximum value of Tmax - minimum value of Tmin) of CORDEX-East Asia phase Ⅰ data, which are significantly different from those of observation data, are reduced in that of CORDEX-East Asia phase Ⅱ. Consequently, the high-resolution regional climate models play a role in the improvement of the cold bias having the relatively low-resolution ones. To understand the reasons for the improved and weak points of regional climate models, we investigated the atmospheric field (i.e., flow, air mass, precipitation, and radiation) influencing near-surface air temperature. Model performances for SAT over East Asia were influenced by the expansion of the western North Pacific subtropical high and the location of convective precipitation in JJA and by the contraction of the Siberian high, the spatial distribution of snowfall and associated upwelling longwave radiation in DJF.</p>


2020 ◽  
Vol 20 (21) ◽  
pp. 13191-13216
Author(s):  
Marc Mallet ◽  
Fabien Solmon ◽  
Pierre Nabat ◽  
Nellie Elguindi ◽  
Fabien Waquet ◽  
...  

Abstract. Simulations are performed for the period 2000–2015 by two different regional climate models, ALADIN and RegCM, to quantify the direct and semi-direct radiative effects of biomass-burning aerosols (BBAs) in the southeast Atlantic (SEA) region. Different simulations have been performed using strongly absorbing BBAs in accordance with recent in situ observations over the SEA. For the July–August–September (JAS) season, the single scattering albedo (SSA) and total aerosol optical depth (AOD) simulated by the ALADIN and RegCM models are consistent with the MACv2 climatology and MERRA-2 and CAMS-RA reanalyses near the biomass-burning emission sources. However, the above-cloud AOD is slightly underestimated compared to satellite (MODIS and POLDER) data during the transport over the SEA. The direct radiative effect exerted at the continental and oceanic surfaces by BBAs is significant in both models and the radiative effects at the top of the atmosphere indicate a remarkable regional contrast over SEA (in all-sky conditions), with a cooling (warming) north (south) of 10 ∘S, which is in agreement with the recent MACv2 climatology. In addition, the two models indicate that BBAs are responsible for an important shortwave radiative heating of ∼0.5–1 K per day over SEA during JAS with maxima between 2 and 4 km a.m.s.l. (above mean sea level). At these altitudes, BBAs increase air temperature by ∼0.2–0.5 K, with the highest values being co-located with low stratocumulus clouds. Vertical changes in air temperature limit the subsidence of air mass over SEA, creating a cyclonic anomaly. The opposite effect is simulated over the continent due to the increase in lower troposphere stability. The BBA semi-direct effect on the lower troposphere circulation is found to be consistent between the two models. Changes in the cloud fraction are moderate in response to the presence of smoke, and the models differ over the Gulf of Guinea. Finally, the results indicate an important sensitivity of the direct and semi-direct effects to the absorbing properties of BBAs. Over the stratocumulus (Sc) region, DRE varies from +0.94 W m−2 (scattering BBAs) to +3.93 W m−2 (most absorbing BBAs).


2020 ◽  
Author(s):  
Marc Mallet ◽  
Fabien Solmon ◽  
Pierre Nabat ◽  
Nellie Elguindi ◽  
Fabien Waquet ◽  
...  

Abstract. Simulations are performed for the period 2000–2015 by two different regional climate models, ALADIN–Climat and RegCM, to quantify the direct and semi-direct radiative effects of biomass burning aerosols (BBA) in the Southeast Atlantic (SEA) region. The approach of using two different independent RCMs reinforces the robustness of the results. Different simulations have been performed using strongly absorbing BBA in accordance with recent in situ observations over the SEA. For the July–August–September (JAS) season, the single scattering albedo (SSA) and total aerosol optical depth (AOD) simulated by the ALADIN–Climat and RegCM models are consistent with the MACv2 climatology and MERRA-2 and CAMS-RA reanalyses near the biomass burning emission sources. However, the above-cloud AOD is slightly underestimated compared to satellite (MODIS and POLDER) data during the transport over the SEA. The direct radiative effect exerted at the continental and oceanic surfaces by BBA is significant in both models and the radiative effects at the top of the atmosphere indicate a remarkable regional contrast over SEA (in all-sky conditions), with a cooling (warming) north (south) of 10° S, which is in agreement with the recent MACv2 climatology. In addition, the two models indicate that BBA are responsible for an important shortwave radiative heating of ~ 0.5–1 K per day over SEA during JAS with maxima between 2 and 4 km above mean sea-level. At these altitudes, BBA increase air temperature by ~ 0.2–0.5 K, with the highest values being co-located with low stratocumulus clouds. Vertical changes in air temperature limit the subsidence over SEA creating a cyclonic anomaly. The opposite effect is simulated over the continent due to the increase in lower troposphere stability. The BBA semi-direct effect on the lower troposphere circulation is found to be consistent between the two models. Changes in the cloud fraction are moderate in response to the presence of smoke and the models differ over the Gulf of Guinea. Finally, the results indicate an important sensitivity of the direct and semi-direct effects to the absorbing properties of BBA.


Author(s):  
M. S. Zamfirova ◽  
V. M. Khokhlov

Global temperatures over the period of 2081–2100 are expected to rise by 0.3–4.8 °C compared to the period of 1986–2005. According to the previous studies, the average annual air temperature in all regions of Ukraine will keep increasing in the near future and the maximum increase in precipitation is expected mainly in the western and northern regions during winter and spring, whereas the decrease in precipitation will be registered in the central, eastern and southern regions during summer and autumn. This article aims to identify the features of changes in air temperature and precipitation for different regions of Ukraine in 2021–2050 based on the modelling results of the ensemble of CORDEX models as per the RCP4.5 scenario. 16 simulation runs for 7 regional climate models were selected for the analysis and the results were presented for five regional centers of Ukraine: Kyiv, Lviv, Kropyvnytskyi, Kharkiv and Odesa. It is shown that future monthly precipitation in all regions tends to increase by an average of 20–40 mm during autumn, winter and spring, whereas the decrease is expected to occur in summer. According to some models, the monthly precipitation will be close to zero in the Southern Ukraine in July and August, which is typical for the Mediterranean climate. Compared to the period of 1961–1990, the average monthly temperature will undergo small changes (up to 1 °C) in spring and autumn, while the temperature in summer and winter will increase by 2.5–3.5 °C. In Odesa, in contrast to the present-day situation, a positive average monthly air temperature will be expected to be recorded throughout the whole year, and only 25% of the runs show negative average monthly minimum temperatures. In the Northern Ukraine, the average monthly minimum and maximum temperatures in winter will increase by 2.0–2.5 °C, and in summer only the maximum air temperature will increase significantly. Thus, we can assume a change in the regime of moisture supply in Ukraine over the next thirty years. One can also assume a high probability of snow cover absence throughout the whole winter in the Southern Ukraine as a result of positive temperatures.


Sign in / Sign up

Export Citation Format

Share Document