scholarly journals Transcriptome analysis of low phosphate stress response in the roots of masson pine (Pinus massoniana) seedlings

2020 ◽  
Vol 42 (12) ◽  
Author(s):  
Xiaocheng Pan ◽  
Haibo Hu
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Baomei Wang ◽  
Can Liu ◽  
Dengfeng Zhang ◽  
Chunmei He ◽  
Juren Zhang ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 332
Author(s):  
Min Li ◽  
Haoyun Wang ◽  
Xizhou Zhao ◽  
Zhongke Lu ◽  
Xueguang Sun ◽  
...  

Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.


2020 ◽  
Vol 477 ◽  
pp. 118503
Author(s):  
Cheng Deng ◽  
Shougong Zhang ◽  
Yuanchang Lu ◽  
Robert E. Froese ◽  
Xiaojun Xu ◽  
...  

2021 ◽  
Author(s):  
Lorenz Rhuel P. Ragasa ◽  
Santiago Emil A. Joson ◽  
Windy Lou R. Bagay ◽  
Teresita R. Perez ◽  
Michael C. Velarde

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 558 ◽  
Author(s):  
Fukuan Du ◽  
Gangchun Xu ◽  
Zhijuan Nie ◽  
Pao Xu ◽  
Ruobo Gu

2011 ◽  
Vol 12 (2) ◽  
pp. R17 ◽  
Author(s):  
Maarten Vercruysse ◽  
Maarten Fauvart ◽  
Ann Jans ◽  
Serge Beullens ◽  
Kristien Braeken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document