Apoplastic reactive oxygen species mediated escape growth of root during illumination in Vigna radiata (L.) Wilczek seedlings

2021 ◽  
Vol 43 (11) ◽  
Author(s):  
Tanmay Dey ◽  
Satyajit Das ◽  
Arkajo Majumdar ◽  
Rup Kumar Kar
2007 ◽  
Vol 50 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Yoon Jumg Song ◽  
Jung Hee Joo ◽  
Hee Young Ryu ◽  
June Seung Lee ◽  
Yun Soo Bae ◽  
...  

2014 ◽  
Vol 6 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Bhavin SUTHAR ◽  
Jayesh PANSURIYA ◽  
Mafatlal M KHER ◽  
Dr. Vinay R PATEL ◽  
Murugan NATARAJ

Hexavalant chromium is considered the most toxic form because of its high solubility in water. Cr is known to induce production of elevated concentration of reactive oxygen species (ROS) resulted in macromolecule damage. Plants are having unique mechanisms to overcome ROS induced damage by accumulation of proline, ascorbate and glutathione and increasing the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidaes (APX), peroxidise (POX). In the present investigation effects of chromium on seed germination of Mung bean (Vigna radiata 'Gujarat Mung-4’) were studied. Seeds were treated with different Cr concentrations (50, 100, 150 and 200 4M) for seven days. On 7th day root and shoot length was measured and activities of antioxidant enzyme SOD, APX, POX, CAT and GR were checked along with protein, proline and lipid peroxidation. It was observed that there is gradual decrease in shoot and root length with respect to the increase in Cr concentration. Level of lipid peroxidation significantly increased along with proline and antioxidant enzyme activity at higher Cr concentration. Lipid peroxidation is an indication of membrane damage due to elevated production of reactive oxygen species (ROS). To combat oxidative damage by ROS antioxidant enzyme activity increased significantly, which indicates that antioxidant enzymes (SOD, CAT, APX and GR) play a crucial role during Cr stress during germination of V. radiata.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document