Role of phenylpropanoid compounds in plant responses to different stress factors

1997 ◽  
Vol 19 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Danuta Solecka
2021 ◽  
Author(s):  
María Sanz‐Fernández ◽  
Alejandro Rodríguez‐González ◽  
Luisa M. Sandalio ◽  
María C. Romero‐Puertas

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alberto Fresa ◽  
Simona Sica

AbstractIt’s still not clear whether the mutational status of BRCA-mutated healthy hematopoietic stem cells (HSCs) donors could have an impact on the engraftment. Comparing the studies present in literature, we focused on the correlation between BRCA mutations and the development of hematological malignancies and Fanconi anemia (FA); then, we explored HSCs types, frequencies, and functions in the presence of BRCA mutations, as well as the reconstitution of hematopoiesis after chemotherapy and radiation treatments. The role of BRCA mutations in the FA showed a possible involvement in the onset of the disease; the mutation carriers, indeed, did not show any sign of the typical phenotype of the FA. BRCA mutational status can be considered as a risk factor for hematological malignancies, but only for secondary malignancies and/or in the presence of bone marrow stress factors. Currently we don’t know if a conditioning regimen could be compensated by BRCA mutated HSCs, even if murine models tried to show the possible differences between fully mutated, haploinsufficient and normal HSCs. Thus, given the downregulating effect of the mutations on hematopoiesis, it could be questionable to use the HSCs of a BRCA-mutated donor in the presence of another available donor with the same compatibility.


2021 ◽  
Vol 22 (6) ◽  
pp. 2950
Author(s):  
Beatrycze Nowicka ◽  
Agnieszka Trela-Makowej ◽  
Dariusz Latowski ◽  
Kazimierz Strzalka ◽  
Renata Szymańska

Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiao Wang ◽  
Chenfei Zheng ◽  
Xiangqi Shao ◽  
Zhangjian Hu ◽  
Jianxin Li ◽  
...  

AbstractWith global climate change, plants are frequently being exposed to various stresses, such as pathogen attack, drought, and extreme temperatures. Transcription factors (TFs) play crucial roles in numerous plant biological processes; however, the functions of many tomato (Solanum lycopersicum L.) TFs that regulate plant responses to multiple stresses are largely unknown. Here, using an RNA-seq approach, we identified SlNAP1, a NAC TF-encoding gene, which was strongly induced by various stresses. By generating SlNAP1 transgenic lines and evaluating their responses to biotic and abiotic stresses in tomato, we found that SlNAP1-overexpressing plants showed significantly enhanced defense against two widespread bacterial diseases, leaf speck disease, caused by Pseudomonas syringae pv. tomato (Pst) DC3000, and root-borne bacterial wilt disease, caused by Ralstonia solanacearum. In addition, SlNAP1 overexpression dramatically improved drought tolerance in tomato. Although the SlNAP1-overexpressing plants were shorter than the wild-type plants during the early vegetative stage, eventually, their fruit yield increased by 10.7%. Analysis of different hormone contents revealed a reduced level of physiologically active gibberellins (GAs) and an increased level of salicylic acid (SA) and abscisic acid (ABA) in the SlNAP1-overexpressing plants. Moreover, EMSAs and ChIP-qPCR assays showed that SlNAP1 directly activated the transcription of multiple genes involved in GA deactivation and both SA and ABA biosynthesis. Our findings reveal that SlNAP1 is a positive regulator of the tomato defense response against multiple stresses and thus may be a potential breeding target for improving crop yield and stress resistance.


2018 ◽  
Vol 65 (1) ◽  
pp. 38-48
Author(s):  
B. R. Kuluev ◽  
Z. A. Berezhneva ◽  
A. V. Knyazev ◽  
Yu. M. Nikonorov ◽  
A. V. Chemeris

2018 ◽  
Vol 19 (11) ◽  
pp. 3590 ◽  
Author(s):  
Greg Clark ◽  
Stanley Roux

Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.


2005 ◽  
Vol 17 (1) ◽  
pp. 21-34 ◽  
Author(s):  
María P. Benavides ◽  
Susana M. Gallego ◽  
María L. Tomaro

Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary, nutritional, and environmental reasons. Plants posses homeostatic cellular mechanisms to regulate the concentration of metal ions inside the cell to minimize the potential damage that could result from the exposure to nonessential metal ions. This paper summarizes present knowledge in the field of higher plant responses to cadmium, an important environmental pollutant. Knowledge concerning metal toxicity, including mechanisms of cadmium homeostasis, uptake, transport and accumulation are evaluated. The role of the cell wall, the plasma membrane and the mycorrhizas, as the main barriers against cadmium entrance to the cell, as well as some aspects related to phytochelatin-based sequestration and compartmentalization processes are also reviewed. Cadmium-induced oxidative stress was also considered as one of the most studied topics of cadmium toxicity.


2013 ◽  
Vol 61 (2) ◽  
pp. 161-172 ◽  
Author(s):  
M. Pál ◽  
O. Gondor ◽  
T. Janda

Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA), a phenolic compound produced by a wide range of plant species, may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed.


Author(s):  
José A. Hernández ◽  
Pedro Diaz-Vivancos ◽  
Gregorio Barba-Espín ◽  
María José Clemente-Moreno

Sign in / Sign up

Export Citation Format

Share Document