Numerical and Experimental Studies on Performance Enhancement of Journal Bearings Using Nanoparticles Based Lubricants

Author(s):  
Rajeev Kumar Dang ◽  
Deepam Goyal ◽  
Amit Chauhan ◽  
S. S. Dhami
2019 ◽  
Vol 71 (9) ◽  
pp. 1055-1063 ◽  
Author(s):  
Sanjay Sharma ◽  
Gourav Jamwal ◽  
R.K. Awasthi

Purpose The purpose of this paper is to provide the various steady state parameters of hydrodynamic journal bearings have been determined to get maximum performance enhancement ratio. For this, the bearings inner surface is textured with triangular shape with different texture depths and a number of textures in pressure increasing region. The textured region acts as a lubricant reservoir, which provides additional film-thickness and reduce friction. Therefore, enhance the overall performance of bearing. Design/methodology/approach In the present study, the effect of triangular shaped texture on the static performance characteristics of a hydrodynamic journal bearing has been studied. Different values of texture depths and a number of textures have been numerically simulated in pressure developing region. The static performance characteristics have been calculated by solving the fluid flow governing Reynolds equation using the finite element method, assuming iso-viscous Newtonian fluid. The performance enhancement ratio, which is the ratio of load carrying capacity (LCC) to the coefficient of friction (COF) has been calculated from results to finalized optimum design parameters. Findings The paper provides numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure increasing region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios and texture depth. The performance enhancement ratio, which is the ratio of LCC to the COF is found to be a maximum value of 2.198 at texture depth of 1.5, eccentricity ratio of 0.2 and the textured region located in the increasing pressure region. Research limitations/implications The present study is based on a numerical based research approach, which has its limitations. So, researchers are encouraged to investigate the same work experimentally. Practical implications The paper includes implications to be beneficial for designers for designing better hydrodynamic journal bearings. Originality/value For the triangular shaped texture, considered in the present study, the optimum values of texture depth and texture distribution region have also been determined. While designing, designers should focus on those values of texture depth, texture region and a number of textures, which give the maximum value of performance enhancement ratio, which represents maximum LCC at the lowest value of the COF.


Robotica ◽  
2020 ◽  
Vol 38 (10) ◽  
pp. 1880-1894 ◽  
Author(s):  
Ali Torabi ◽  
Mohsen Khadem ◽  
Koroush Zareinia ◽  
Garnette Roy Sutherland ◽  
Mahdi Tavakoli

SUMMARYThe enhanced dexterity and manipulability offered by master–slave teleoperated surgical systems have significantly improved the performance and safety of minimally invasive surgeries. However, effective manipulation of surgical robots is sometimes limited due to the mismatch between the slave and master robots’ kinematics and workspace. The purpose of this paper is first to formulate a quantifiable measure of the combined master–slave system manipulability. Next, we develop a null-space controller for the redundant master robot that employs the proposed manipulability index to enhance the performance of teleoperation tasks by matching the kinematics of the redundant master robot with the kinematics of the slave robot. The null-space controller modulates the redundant degrees of freedom of the master robot to reshape its manipulability ellipsoid (ME) towards the ME of the slave robot. The ME is the geometric interpretation of the kinematics of a robot. By reshaping the master robot’s manipulability, we match the master and slave robots’ kinematics. We demonstrate that by using a redundant master robot, we are able to enhance the master–slave system manipulability and more intuitively transfer the slave robot’s dexterity to the user. Simulation and experimental studies are performed to validate the performance of the proposed control strategy. Results demonstrate that by employing the proposed manipulability index, we can enhance the user’s control over the force/velocity of a surgical robot and minimize the user’s control effort for a teleoperated task.


1965 ◽  
Vol 5 (04) ◽  
pp. 277-280 ◽  
Author(s):  
Robert D. Vaughn

Abstract The analysis of laminar flow of power-law non- Newtonian fluids in narrow, eccentric annuli is employed in this paper to discuss the problems of lubricant flow in journal bearings and of errors introduced by eccentricity in experimental studies with concentric annuli on extruders and wellbore annuli. The velocity profile and pressure loss-flow rate equations are developed for the laminar flow region. In addition, the expected error in flow rate and pressure-loss measurements for concentric annuli as a result of eccentricity is determined. For example, a 10 per cent displacement of the core of an almost concentric annulus would cause a 1.8 per cent decrease in the observed pressure loss for a fluid with a power-law exponent n of 0.25. The corresponding increase in the observed volumetric flow rate would be 7.5 per cent. Introduction Non-Newtonianism and eccentricity occur simultaneously in two engineering problems:flow of lubricants in journal-bearings and pressure-reducing bushings, andflow of non-Newtonian fluids in plastic extruders and wellbore annuli. The lubricants used for moving parts are often non-Newtonian in character - often they are plastic in behavior. A solution to the problem of flow of non-Newtonian fluids in narrow eccentric annuli is particularly pertinent to this problem. In all experimental studies of laminar flow of fluids in concentric annuli, such as in extruders and well casings, the error due to eccentricity must be estimated or studied. A number of publications have dealt with this problem for Newtonian fluids; however, I am not aware of work for non-Newtonian fluids. This work is directed to the non-Newtonian problem. Before the solution to the problem is given, the pertinent conclusions from the work on Newtonian fluids will be reviewed. Heyda and Redberger and Charles have published general solutions to the problem of the laminar flow of Newtonian fluids in eccentric annuli, apparently without knowing of the earlier work of Caldwell and Bairstow and Berry, which is reported by Dryden, et al. Although several mathematical routes are encompassed by the work of these authors, the results appear to be equivalent. Redberger and Charles show that the error caused by eccentricity in concentric annuli is negligible for small diameter ratios (K less than 0.5); however, for large diameter ratios (K - 1), the error in the predicted flow rate can be as great as 100 per cent or more. Partial solutions to the problem are available from the work of Dryden, Tao and Donovan and Piercy, et al. Tao and Donovan examined the case of flow in narrow, eccentric annuli (K - 1) with and without rotation of the annular core. These authors also reviewed previous work on this subject and verified their approach with experimental data. Dryden gives the solution for the limiting case of complete eccentricity or tangency. Piercy, et al. published an early solution to the problem of narrow eccentric annular flow. The conclusions of Redberger and Charles and the experimental proof of Tao and Donovans both suggest that the region of large diameter ratios (K - 1) is of main interest and that the parallel planes approximation to the solution in this region is satisfactory. This method will now be extended to the laminar flow of non-Newtonian fluids in narrow eccentric annuli. THEORETICAL SOLUTION The geometrical aspects of the problem are illustrated in Fig. 1. To represent the non-Newtonian fluid the power-law model was selected. (1) This model has many disadvantages which have been pointed out; nevertheless, As simplicity, its frequent and wide applicability justify its use in this work. Fredrickson and Birds and Savins have used it as a basis for a theoretical study of laminar flow of non-Newtonian fluids in concentric annuli. SPEJ P. 277ˆ


1972 ◽  
Vol 94 (4) ◽  
pp. 291-296 ◽  
Author(s):  
B. C. Majumdar

Theoretical and experimental studies of externally pressurized gas bearings with multiple supply pressure sources have been made. The solution is obtained for finite journal bearings considering both axial and circumferential flow components. Experimental evidences show the validity of the method.


Author(s):  
Jae-Yeong Lee ◽  
Jaehyun Choi ◽  
Bumhyun Kim ◽  
Yerim Oh ◽  
Wonbin Hong

This paper presents a design methodology focused on feeding networks that can improve the insertion loss and coverage efficiencies of millimeter-wave (mm-Wave) phased arrays in mobile terminals. This enhancement is accomplished by using a grounded coplanar waveguide (GCPW) transmission line (TL) with via fences fabricated on single-layer FR-4 PCB. The exemplified 8-element phased arrays incorporating a compact one-dimensional electromagnetic bandgap (1-D EBG) antenna are fed through a 1 × 8 T-junction power divider, which includes the predetermined phased delay lines. To achieve high radiation performance with minimum leakage power or spurious waves in the T-junction power divider, an island-shape GCPW TL topology with via fences featuring high-impedance surfaces (HIS) is devised and fabricated. For further investigation on the radiation performance and spherical coverage of the mm-Wave mobile antenna, a mobile device prototype equipped with two sets of the 8-element phased arrays is prepared and studied. Through extensive simulation and experimental studies, it can be ascertained that the proposed GCPW TL topology with via fences can improve the realized gain at a coverage efficiency of 50% by more than 3 dB, between 26 and 36 GHz.


1978 ◽  
Vol 100 (2) ◽  
pp. 287-294 ◽  
Author(s):  
A. Harnoy

The hydrodynamic theory of lubrication in journal bearings is extended to elastico-viscous lubricants. The stress relaxation effect upon flow, pressure distribution, friction, and bearing load capacity is considered. This analysis deals with the case of a small relaxation time compared with the transit time required for the lubricant to pass through the bearing. A lubricant model is assumed with a constant relaxation time and without any cross stresses. It is found that the bearing load capacity of an elastic liquid lubrication film is higher than that of a Newtonian one, while the friction torque remains unchanged. Existing experimental studies have shown considerable improvement in journal bearing performance with elastico-viscous lubricants. This analysis suggests stress relaxation to be one of the factors giving rise to this improvement.


Sign in / Sign up

Export Citation Format

Share Document