scholarly journals Effect of Pre-hydrolysis on Simultaneous Saccharification and Fermentation of Native Rye Starch

2020 ◽  
Vol 13 (6) ◽  
pp. 923-936 ◽  
Author(s):  
Ewelina Strąk-Graczyk ◽  
Maria Balcerek

Abstract The rising population and increasing demand for food place added pressure on the agricultural sector to maintain high process efficiency while implementing environmentally friendly methods. In this study, we investigate the effect of pre-hydrolysis of native rye starch and its influence on the yield of ethanol obtained by simultaneous saccharification and fermentation (SSF) from high gravity rye mashes with 25% and 28% w w−1 dry matter content. Fermentation was carried out in a 3-day system at a temperature of 35 ± 1 °C using the dry distillery yeast Ethanol Red (Saccharomyces cerevisiae). The characteristics of the tested raw material and changes in the native rye starch during enzymatic hydrolysis were analyzed using a scanning electron microscope (SEM). The SEM images revealed characteristic changes on the surface of the starch, which was found to have a layered structure, as well as interesting behavior by the yeast during SSF when the glucose concentration in the environment was lowered. Both in the mashes with 25% and 28% w w−1 dry matter, starch pre-hydrolysis did not significantly increase either the initial amounts of sugars available to the yeast or the fermentation efficiency and ethanol yield in comparison to the mashes without this pre-treatment.

2017 ◽  
Vol 35 (No. 3) ◽  
pp. 267-273 ◽  
Author(s):  
Ewelina Strąk ◽  
Maria Balcerek ◽  
Urszula Dziekońska- Kubczak

The efficiency of ethanol production during simultaneous saccharification and fermentation (SSF) of gelatinised starch or in its native form, in high-gravity rye mashes (approx. 21% and approx. 25% dry matter) prepared by pressureless methods of starch release were compared. The obtained fermentation efficiency expressed in % of the theoretical yield was 72.98 ± 1.46% for gelatinised starch and 84.27 ± 1.68% for native starch in the mashes with 21% dry matter, while the use of mashes with 25% dry matter content resulted in 71.22 ± 1.42% and 77.36 ± 1.54% of the theoretical yield, respectively. However, the presence of residual dextrins (1.99 ± 0.82 to 3.04 ± 0.39 g/100 ml) in the fermented mashes suggests the need of further research on the improvement of the process.


2013 ◽  
Vol 10 (2) ◽  
pp. 59-62
Author(s):  
Vladimír Sitkey ◽  
Ján Gaduš ◽  
Ľubomír Kliský ◽  
Alexander Dudák

Abstract Energy variety of amaranth (Amaranthus spp.) was grown in large-scale trials in order to verify the capability of its cultivation and use as a renewable energy source in a biogas plant. The possibility of biogas production using anaerobic co-fermentation of manure and amaranth silage was verified in the experimental horizontal fermentor of 5 m3 volume, working at mesophilic conditions of 38-40 °C. The goal of the work was also to identify the optimum conditions for growth, harvesting and preservation of amaranth biomass, to optimize biogas production process, and to test the residual slurry from digestion process as a high quality organic fertilizer. The average yield of green amaranth biomass was 51.66 t.ha-1 with dry matter content of 37%. Based on the reached results it can be concluded that amaranth silage, solely or together with another organic materials of agricultural origin, is a suitable raw material for biogas production.


2011 ◽  
Vol 343-344 ◽  
pp. 963-967 ◽  
Author(s):  
Zhang Qiang ◽  
Anne Belinda Thomsen

In order to find out appropriate process for ethanol production from corn stover, wet oxidation(195°C,15 minutes)and simultaneous saccharification and fermentation (SSF) was carried out to produce ethanol. The results showed that the cellulose recovery of 92.9% and the hemicellulose recovery of 74.6% were obtained after pretreatment. 86.5% of cellulose was remained in the solid cake . After 24h hydrolysis at 50°C using cellulase(Cellubrix L),the achieved conversion of cellulose to glucose was 64.8%. Ethanol production was evaluated from dried solid cake and the hydrolysate was employed as liquid fraction . After 142 h of SSF with substrate concentration of 8% (W/V), ethanol yield of 73.1 % of the theoretical based on glucose in the raw material was obtained by S. cerevisiae(ordinary baker’ yeast) . The corresponding ethanol concentration and volumetric productivity were 17.2g/L and 0.121g/L.h respectively. The estimated total ethanol production was 257.7 kg/ton raw material by assuming consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These instructions give you the basic guidelines for preparing papers for WCICA/IEEE conference proceedings.


2021 ◽  
Vol 181 (4) ◽  
pp. 37-43
Author(s):  
T. I. Fomina ◽  
T. A. Kukushkina

Background. Representatives of the genus Allium L. are valuable food and medicinal plants that have long been used for nutrition and human health. Modern research has proved their high biological activity. Earlier, we investigated the aboveground organs of a number of wild onion species in the consumer ripeness phase. Higher content of secondary metabolites has been observed in the hemiephemeroid species A. aflatunense B. Fedtsch., A. microdictyon Prokh., and A. rosenbachianum Regel. The aim of this work was to determine the content of bioactive compounds in the green biomass of Allium species during flowering.Materials and methods. We studied the freshly harvested raw materials – leaves and flower scapes. Dry matter content was measured by drying 1 g of raw material at 100–105°C to constant weight. The amounts of phenolic compounds, pectic substances, total sugars and carotenoids were assessed spectrophotometrically using the SF-56 (Russia) and SF Agilent 8453 (USA) instruments, and ascorbic acid was measured by the titrimetric method. The result was taken as an average of three measurements for each indicator calculated on absolute dry weight of raw material (except ascorbic acid).Results and conclusions. The green biomass of Allium species was found to contain 8,2–16,2% of dry matter; 4,5–12,0% of phenolics (catechins, flavonols and tannins); 6,9–32,4% of total sugars; 9,5–12,6% of pectic compounds (pectins and protopectins); 20,8–102,5 mg% of carotenoids, and 38,0–197,7 mg% of ascorbic acid (wet weight). A significant range of variation in the content of secondary metabolites was due to the species’ characteristics and weather conditions of the growing season. A. microdictyon had a higher content of dry matter, flavonols and tannins, whereas A. aflatunense and A. rosenbachianum were rich in ascorbic acid and sugars. The findings testify to the prospects of using Allium spp. as a source of bioactive compounds. 


1997 ◽  
Vol 6 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Tuomo Tupasela ◽  
Petri Koskela ◽  
Eero Pahkala ◽  
Veikko Kankare

Whey proteins, which are mainly composed of β-lactoglobulin (β-lg) and α-lactalbumin (α-la), account for about 20% of the proteins of bovine milk. In this study we investigated the effect of pH, dry matter content, concentration factor, heat treatment and centrifugation on the separation of α-la from β-lg using clarified whey as raw material, α-La precipitation was highest, 23.3%, when the dry matter content ranged from 5.8% to 25.7%. The optimum pH of α-la precipitation depended on the dry matter content. The separation efficiency increased when the concentration factor and heat treatment time at 55°C increased. A longer centrifugation time and higher separation speed did not have a marked effect on the separation efficiency. Separation was more efficient with a higher centrifugation speed at concentration levels 30 X and 60 X. The separation efficiency did not improve when the temperature was raised from 55°C to 65°C but it was better at a concentration level 120 X than at 60 X and 30 X, and also at concentration level 60 X than with 30 X.


Author(s):  
S. T. Antipov ◽  
V. Yu. Ovsyannikov ◽  
A. A. Korchinskij

The urgency of the use of blood components as a raw material for the production of products from it that contribute to the prevention and treatment of iron deficiency states is beyond doubt. In addition, protein compounds in the blood of cattle have a high digestibility of the human body, and the complex of essential amino acids determines its attractiveness as an additive in the development of a wide range of meat products. The only possible way at present to thicken thermo labile blood compounds is cryoconcentration, carried out in a temperature range close to the cryoscopy temperature. The kinetic features of cryoconcentration of cattle blood were investigated on an experimental apparatus of cyclic action. It is shown that the conditions of cryoconcentration are determined by the boiling point of the refrigerant in the evaporator of the installation, the flow rate of the original blood washing the heat exchange surface and the content of soluble compounds in the initial liquid. Experimental data are presented in the form of growth curves of frozen ice on the heat exchange surface with an area of 0.2 m2. Using mathematical planning methods, equations are obtained that describe the amount of ice frozen for 1 hour per unit of surface area of the freezing plant, the specific energy input for freezing one kilogram of ice, and the dry matter content of the blood in the solution obtained by melting the frozen ice. The solved problem of optimizing the process of blood cryoconcentration made it possible to find rational intervals for changing the operating parameters of the freezing plant, ensuring the maximum amount of frozen ice, minimal energy costs and minimal content of soluble substances in the solution obtained by melting frozen ice. The suboptimal intervals of the indicated parameters were the following: refrigerant boiling point 256– 260 K, blood consumption (0.20–0.205)·10-3 m3/s, dry matter content 22.5–23.0 %.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Joanna Berłowska ◽  
Katarzyna Pielech-Przybylska ◽  
Maria Balcerek ◽  
Urszula Dziekońska-Kubczak ◽  
Piotr Patelski ◽  
...  

Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015–0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) andPichia stipitis(0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching26.9±1.2 g/L and86.5±2.1%fermentation efficiency relative to the theoretical yield.


Sign in / Sign up

Export Citation Format

Share Document