Effect of Cinnamon Essential Oil-Loaded Nanostructured Lipid Carriers (NLC) Against Penicillium Citrinum and Penicillium Expansum Involved in Tangerine Decay

Author(s):  
Mohsen Radi ◽  
Hanieh Ahmadi ◽  
Sedigheh Amiri
2018 ◽  
Vol 69 (8) ◽  
pp. 1927-1933 ◽  
Author(s):  
Mariana Deleanu ◽  
Elisabeta E. Popa ◽  
Mona E. Popa

The compounds in Ginger (Zingiber officinale-Roscoe) essential oil provenience China and wild oregano (Origanum vulgare) essential oil of Romanian origin were identified by GC/MS and their antioxidant and antifungal properties were evaluated. Wild oregano oil was characterized by high content of oxygenated monoterpenes hydrocarbons (84.05%) of which carvacrol was the most abundant (73.85%) followed by b-linalool (3.46%) and thymol (2.29%). Ginger oil had a higher content of sesquiterpene hydrocarbons including zingiberene (31.47%), b-sesquiphellandrene (13.76%), a-curcumene (10.41%), a-farnesene (8.31%) and b-bisabolene (7.55%) but a lower content of oxygenated monoterpenes (7.97%). The high content of oxygenated monoterpens of wild oregano oil is in accordance with total content of polyphenols determined by the Folin�Ciocalteu method (6.71�0.73 mg of gallic acid equivalent per g oil). Ginger oil had only 1.34�0.22 mg gallic acid equivalent per g oil. Wild oregano oils exhibited appreciable in vitro antioxidant activity as assessed by 2, 2`-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 2,2�-azino-bis (3 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). The sample concentration required to scavenge 50% of the DPPH free radicals was 0.76�0.13 mg/mL for wild oregano oil compared to 20.22�2.12 mg/mL for ginger oil. Also, wild oregano oils showed significant inhibitory activity against selected pathogenic fungi (Fusarium oxysporum, Aspergillus flavus and Penicillium expansum). 1�L of oregano oil is sufficient for almost 75% growth inhibition of Aspergillus flavus compared to ginger oil which shows antifungal activity at 240�L for 78% growth inhibition. It can be concluded that wild oregano oil could be used as food preservative in some food products in which Fusarium oxysporum, Aspergillus flavus and Penicillium expansum could grow and have potential to produce health hazards mycotoxines.


2020 ◽  
Vol 10 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Imane Rihab Mami ◽  
Rania Belabbes ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Carthamus caeruleus belongs to the Asteraceae family. The roots are traditionally used as healing agents. They help to heal burns and treat skin diseases. They are also used against joint inflammation and are very effective against diseases such as irritable bowel syndrome for cancer patients. Objectives: The purpose of this work was i) to study the chemical composition of i) the essential oil and hydrosol extract of Carthamus caeruleus, ii) to isolate the major component of both extracts and iii) to evaluate their antioxidant, antifungal and insecticidal activities. Methods: The essential oil and hydrosol extract obtained from the roots were studied by GC and GC/MS. The antioxidant activities were performed using two different methods i) Radical scavenging activity (DPPH) and ii) the Ferric-Reducing Antioxidant Power (FRAP), using BHT as a positive control. Whereas, the antifungal activity of the essential oil and Carlina oxide was investigated against plant fungi. The fumigation toxicity of C. caeruleus essential oil besides Carlina oxide was evaluated against adults of Bactrocera oleae better known as the olive fly. Results: The essential oil and hydrosol extract were mainly represented by acetylenic compounds such as carline oxide and 13-methoxy carline oxide. Carlina oxide was isolated and identified by 1H and 13C NMR spectroscopic means. The results showed that Carlina oxide presented interesting antioxidant and antifungal properties, while C. caeruleus root essential oil had better insecticidal activity. Furthermore, Carlina oxide has demonstrated promising in vivo antifungal activity to control infection of apples by Penicillium expansum. Conclusion: Carlina oxide can be used as a natural food preservative and alternative to chemical fungicides to protect stored apple against Penicillium expansum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeo-Jin Jeong ◽  
Hee-Eun Kim ◽  
Su-Jin Han ◽  
Jun-Seon Choi

AbstractCinnamon essential oil (CEO) has antibacterial properties, but its ability to suppress the formation of multi-species oral biofilms has not been fully elucidated. This study evaluated the antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion (CEON) against oral biofilms formed using a microcosm biofilm model. The biofilms were formed on bovine enamel specimens over a 7-day period, during which all specimens were treated with one of three solutions: 5% CEON (n = 35), 0.5% cocamidopropyl betaine (n = 35), or 0.12% chlorhexidine gluconate (CHX; n = 35). Antibacterial and antibiofilm activities were determined by the red/green ratios (R/G values) of 7-day-old mature biofilms photographed with quantitative light-induced fluorescence-digital, the number of aciduric bacterial colony-forming units (CFUs) within each biofilm, and the absorbance of bacterial suspensions. One-way and repeated-measures analysis of variance were performed to compare differences among the three solutions. R/G values were lowest in the 0.12% CHX group, but not significantly differ from the 5% CEON group. The number of CFUs and absorbance were lowest in the 5% CEON group. This study showed that nanoemulsified CEO inhibited the maturation of multi-species oral biofilms and the growth of oral microorganisms in biofilms, including aciduric bacteria that cause dental caries.


Sign in / Sign up

Export Citation Format

Share Document