Phytochemical Characterization, Antioxidant, Anti-inflammatory, Anti-diabetic properties, Molecular Docking, Pharmacokinetic Profiling, and Network Pharmacology Analysis of the Major Phytoconstituents of Raw and Differently Dried Mangifera indica (Himsagar cultivar): an In Vitro and In Silico Investigations

Author(s):  
Tanmay Sarkar ◽  
Kaushik Kumar Bharadwaj ◽  
Molla Salauddin ◽  
Siddhartha Pati ◽  
Runu Chakraborty
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 825
Author(s):  
Mohammad Khalid ◽  
Mohammed H. Alqarni ◽  
Ambreen Shoaib ◽  
Muhammad Arif ◽  
Ahmed I. Foudah ◽  
...  

The fruits of Spondias mangifera (S. mangifera) have traditionally been used for the management of rheumatism in the northeast region of India. The present study explores the probable anti-arthritis and anti-inflammatory potential of S. mangifera fruit extract’s ethanolic fraction (EtoH-F). To support this study, we first approached the parameters in silico by means of the active constituents of the plant (beta amyrin, beta sitosterol, oleonolic acid and co-crystallised ligands, i.e., SPD-304) via molecular docking on COX-1, COX-2 and TNF-α. Thereafter, the absorption, distribution, metabolism, excretion and toxicity properties were also determined, and finally experimental activity was performed in vitro and in vivo. The in vitro activities of the plant extract fractions were evaluated by means of parameters like 1,1-Diphenyl-2- picrylhydrazyl (DPPH), free radical-reducing potential, albumin denaturation, and protease inhibitory activity. The in vivo activity was evaluated using parameters like COX, TNF-α and IL-6 inhibition assay and arthritis score in Freund Adjuvant (CFA) models at a dose of 400 mg/kg b.w. per day of different fractions (hexane, chloroform, alcoholic). The molecular docking assay was performed on COX-1, COX-2 and TNF-α. The results of in vitro studies showed concentration-dependent reduction in albumin denaturation, protease inhibitors and scavenging activity at 500 µg/mL. Administration of the S. mangifera alcoholic fraction at the abovementioned dose resulted in a significant reduction (p < 0.01) in arthritis score, paw diameters, TNF-α, IL-6 as compared to diseased animals. The docking results showed that residues show a critical binding affinity with TNF-α and act as the TNF-α antagonist. The alcoholic fraction of S. mangifera extract possesses beneficial effects on rheumatoid arthritis as well as anti-inflammatory potential, and can further can be used as a possible agent for novel target-based therapies for the management of arthritis.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6883
Author(s):  
Sergey Francevich Vasilevsky ◽  
Ol’ga Leonidovna Krivenko ◽  
Irina Vasilievna Sorokina ◽  
Dmitry Sergeevich Baev ◽  
Tatyana Genrikhovna Tolstikova ◽  
...  

The interaction of acetamidine and phenylamidine with peri-R-ethynyl-9,10-anthraquinones in refluxing n-butanol leads to the formation of cascade transformations products: addition/elimination/cyclization―2-R-7H-dibenzo[de,h]quinolin-7-ones and(or) 2-R-3-aroyl-7H-dibenzo[de,h]quinolin-7-ones. The anti-inflammatory and antitumor properties of the new 2-R-7H-dibenzo[de,h]quinolin-7-ones were investigated in vivo, in vitro, and in silico. The synthesized compounds exhibit high anti-inflammatory activity at dose 20 mg/kg (intraperitoneal injection) in the models of exudative (histamine-induced) and immunogenic (concanavalin A-induced) inflammation. Molecular docking data demonstrate that quinolinones can potentially intercalate into DNA similarly to the antitumor drug doxorubicin.


2021 ◽  
Vol 11 (3) ◽  
pp. 79-85
Author(s):  
Ashish Kumar ◽  
Neeraj Kumar ◽  
Balwan Singh

Laccifer lacca has generally been used as pigmenting, coloring agent and dying in chemical industry. Although, it has wide range of industrial applications, but inappropriately, due to lesser availability of data, it has been ignored. Keeping in mind, the wide application of Laccifer lacca, we tried to report the in-silico anti-cancer effects. The experimental techniques used to determine the structure was X-RAY diffraction. The reported resolution of this entry is 2.80 Å. Percentile scores (ranging between 0-100) for global authentication metrics of the record. In silico have a good pool to explore various parameters in molecular docking. We have performed in silico analysis of the active components of Laccifer lacca against the cervical, breast and lung cancer proteins and also found that lac extract enhances the production of anti-inflammatory markers and the increase is significant when compared to the standard vinblastine. It has been demonstrated by Lala and colleagues that a short lived molecule nitric oxide can result in the progression of human tumours. Therefore, the prominent antioxidant activity of phytochemical that can act as inhibitors of nitric oxide production can act as anticancer therapeutics. Both methanolic and aqueous extract shows significant anticancer effect on the hela, MCF-7 & A549 cells suggesting them as potential anticancer therapeutics for future. Keywords: Laccifer lacca, In-vitro & In-silico analysis, Carcinogenesis, Anti-inflammatory, Molecular Docking.


Author(s):  
Nia Samira ◽  
Benarous Khedidja ◽  
Abdelalim Fatima Zahra ◽  
Chellali Khadidja Nour Elyakine ◽  
Yousfi Mohamed

Background: For the first time, the anti-inflammatory drug betamethasone is investigated for its inhibitory activity against lipase. Objective: This work aims to demonstrate the in vitro and in silico inhibitory effect of the anti-inflammatory drug betamethasone on the enzymatic activity of two lipases. Methods: In vitro study using p-nitrophenyllaurate as lipase substrate is used to determine inhibition potency. Molecular Docking is performed using the Autodock Vina for drug molecule and two enzymes Candida rugosa lipase and human pancreatic lipase. Results: Betamethasone represents a moderate inhibition effect with a value of IC50 of 0.36±0.01 mg/ml. Molecular docking allowed us to understand inhibitory – enzyme interactions and to confirm in vitro obtained results. Conclusion: These experiments showed that betamethasone can be used in the treatment of diseases related to lipase activity.


2021 ◽  
Vol 18 (10) ◽  
pp. 2125-2131
Author(s):  
Qing Zhang ◽  
Ruolan Li ◽  
Jia Liu ◽  
Wei Peng ◽  
Yongxiang Gao ◽  
...  

Purpose: To investigate by in silico screening the anti-inflammatory constituents of Cinnamomum cassia twigs. Methods: Information on the constituents of C. cassia twigs was retrieved from the online Traditional Chinese Medicines (TCM) database and literature. Inflammation-related target proteins were identified from DrugBank, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genetic Association Database (GAD), and PharmGKB. The identified compounds were filtered by Lipinski’s rules with Discovery Studio software. The “Libdock” module was used to perform molecular docking; LibdockScores and default cutoff values for hydrogen bonds and van der Waals interactions were recorded. LibdockScores between the prototype ligand and target protein were set as the threshold; compounds with higher LibdockScores than threshold were regarded as active compounds. Cytoscape software was used to construct active constituent-target protein interaction networks. Results: Sixty-nine potential inflammatory constituents with good drug-like properties in C. cassia twigs were screened in silico based on molecular docking and network pharmacology analysis. JAK2, mPEGS-1, COX-2, IL-1β, and PPARγ were considered the five most important target proteins. Compounds such as methyl dihydromelilotoside, hierochin B, dihydromelilotoside, dehydrodiconiferyl alcohol, balanophonin, phenethyl (E)-3-[4-methoxyphenyl]-2-propenoate, quercetin, and luteolin each interacted with more than six of the selected target proteins. Conclusion: C. cassia twigs possess active compounds with good drug-like properties that can potentially be developed to treat inflammation with multi-components on multi-targets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hui Tian ◽  
Linli Wei ◽  
Yunxiu Yao ◽  
Zhaoqing Zeng ◽  
Xue Liang ◽  
...  

Objective. The possible core active compounds and potential mechanism of action of Shiyifang Vinum were explored through network pharmacology and in vitro enzyme activity verification experiments. Methods. We screened the core active components and the action targets of Shiyifang Vinum through the TCMSP database and literature mining and drew a Venn map of the intersection with anti-inflammatory and analgesic-related gene targets. Go and KEGG analyses were enriched with the David database. The compound target pathway network was constructed using Cytoscape 3.6.1. The binding strength of core active compounds and target proteins was verified through molecular docking, and the direct effects of Shiyifang Vinum and four monomer compounds on COX-2 enzyme activity were detected through an in vitro enzyme activity test. Results. 14 active compounds and 11 targets were screened out from Shiyifang Vinum through TCMSP database and literature mining; 252 GO entries were obtained by GO analysis, and 114 signal pathways were screened by KEGG analysis. The results of the molecular docking showed that the core compounds and target proteins had strong binding activity. In vitro validation experiments showed that both the Shiyifang Vinum and the four monomer compounds could inhibit the activity of COX-2. Conclusion. This study preliminarily explored the potential active compounds and target proteins of the anti-inflammatory and analgesic effects of Shiyifang Vinum, which could provide a scientific basis for further study on the anti-inflammatory and analgesic mechanism and material basis of this recipe.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Damilola Alex Omoboyowa

Abstract Background Inflammation has continued to raise global challenges and Jatropha tanrogenesis (JT) is used traditionally for its management. In this study, the in silico and in vitro anti-inflammatory potential of bioactive sterols were investigated. The active compounds of ethanol extract of JT leaves were identified using Gas chromatography-mass spectrometry (GC.MS) followed by molecular docking against COX-1 and COX-2 using maestro Schrödinger and pharmacokinetic profile prediction using webserver tools. The in vitro anti-inflammatory and anti-oxidantive potentials were investigated using standard protocols. Results GC–MS analysis of ethanol extract of JT leaves revealed the presence of eight (8) compounds, the molecular docking analysis of these compounds demonstrated varying degrees of binding affinities against the target proteins. The extract exhibit concentration dependent anti-oxidant activity with IC50 of 106.383 and 6.00 Fe2+E/g for DPPH and FRAP respectively. The extract showed significant (P < 0.05) reduction in percentage inhibition of hemolysis at 200 µg/ml while non-significant (P > 0.05) increase was observed at 600 and 1000 µg/ml compared to 200 µg/ml of diclofenac sodium. At lower concentration of 25 and 50 µg/ml, percentage inhibition of albumin denaturation was significantly (P < 0.05) higher compared to 200 µg/ml of diclofenac sodium. Drug likeness prediction and ADME/toxicity screening showed that the bioactive compounds possess no side effects. Conclusion The results obtained in this study suggested that, JT leaves possess anti-inflammatory activity and could be used as a source of new drug.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhangfeng Zhong ◽  
Qianru Zhang ◽  
Hongxun Tao ◽  
Wei Sang ◽  
Liao Cui ◽  
...  

Abstract Background Sigesbeckia glabrescens Makino (SG) is one of the important plant origins of Sigesbeckiae herba and has been widely used for the treatment of chronic inflammatory diseases in China. However, the underlying anti-inflammatory mechanism of SG is rarely investigated and reported. There are more than 40 kinds of chemical constituents in SG, but the action of the bioactive compounds of SG is still unclear. Therefore, we aimed to systemically investigate the mechanisms behind the anti-inflammatory properties of SG by combining in vitro and in silico investigations. Methods Cytotoxicity was measured using the 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Nitric oxide (NO) release was detected using the Griess assay. The secretion of pro-inflammatory cytokines and the expression of relevant proteins were assessed using ELISA kits and Western blots, respectively. Molecular docking was performed and scored using AutoDock via a comparison with the molecular docking of N-acetyl-d-glucosamine (NAG). Results In lipopolysaccharides (LPS)-stimulated macrophages, SG significantly inhibited NO, MCP-1, and IL-6 secretion; iNOS expression; and NF-κB activation but did not significantly affect MAPK signalling (p38, ERK, and JNK). Moreover, the results from the molecular docking prediction suggested that over 10 compounds in SG could likely target TLR4, p105, and p65. Conclusions These findings suggest that the anti-inflammatory effects of SG are highly related to the inactivation of NF-κB. Moreover, this study provides a novel approach to investigate the effects of herbal medicine using combined in vitro and in silico investigations.


Sign in / Sign up

Export Citation Format

Share Document