scholarly journals In silico screening of anti-inflammatory constituents with good drug-like properties from twigs of Cinnamomum cassia based on molecular docking and network pharmacology

2021 ◽  
Vol 18 (10) ◽  
pp. 2125-2131
Author(s):  
Qing Zhang ◽  
Ruolan Li ◽  
Jia Liu ◽  
Wei Peng ◽  
Yongxiang Gao ◽  
...  

Purpose: To investigate by in silico screening the anti-inflammatory constituents of Cinnamomum cassia twigs. Methods: Information on the constituents of C. cassia twigs was retrieved from the online Traditional Chinese Medicines (TCM) database and literature. Inflammation-related target proteins were identified from DrugBank, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genetic Association Database (GAD), and PharmGKB. The identified compounds were filtered by Lipinski’s rules with Discovery Studio software. The “Libdock” module was used to perform molecular docking; LibdockScores and default cutoff values for hydrogen bonds and van der Waals interactions were recorded. LibdockScores between the prototype ligand and target protein were set as the threshold; compounds with higher LibdockScores than threshold were regarded as active compounds. Cytoscape software was used to construct active constituent-target protein interaction networks. Results: Sixty-nine potential inflammatory constituents with good drug-like properties in C. cassia twigs were screened in silico based on molecular docking and network pharmacology analysis. JAK2, mPEGS-1, COX-2, IL-1β, and PPARγ were considered the five most important target proteins. Compounds such as methyl dihydromelilotoside, hierochin B, dihydromelilotoside, dehydrodiconiferyl alcohol, balanophonin, phenethyl (E)-3-[4-methoxyphenyl]-2-propenoate, quercetin, and luteolin each interacted with more than six of the selected target proteins. Conclusion: C. cassia twigs possess active compounds with good drug-like properties that can potentially be developed to treat inflammation with multi-components on multi-targets.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hui Tian ◽  
Linli Wei ◽  
Yunxiu Yao ◽  
Zhaoqing Zeng ◽  
Xue Liang ◽  
...  

Objective. The possible core active compounds and potential mechanism of action of Shiyifang Vinum were explored through network pharmacology and in vitro enzyme activity verification experiments. Methods. We screened the core active components and the action targets of Shiyifang Vinum through the TCMSP database and literature mining and drew a Venn map of the intersection with anti-inflammatory and analgesic-related gene targets. Go and KEGG analyses were enriched with the David database. The compound target pathway network was constructed using Cytoscape 3.6.1. The binding strength of core active compounds and target proteins was verified through molecular docking, and the direct effects of Shiyifang Vinum and four monomer compounds on COX-2 enzyme activity were detected through an in vitro enzyme activity test. Results. 14 active compounds and 11 targets were screened out from Shiyifang Vinum through TCMSP database and literature mining; 252 GO entries were obtained by GO analysis, and 114 signal pathways were screened by KEGG analysis. The results of the molecular docking showed that the core compounds and target proteins had strong binding activity. In vitro validation experiments showed that both the Shiyifang Vinum and the four monomer compounds could inhibit the activity of COX-2. Conclusion. This study preliminarily explored the potential active compounds and target proteins of the anti-inflammatory and analgesic effects of Shiyifang Vinum, which could provide a scientific basis for further study on the anti-inflammatory and analgesic mechanism and material basis of this recipe.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhencheng Xiong ◽  
Can Zheng ◽  
Yanan Chang ◽  
Kuankuan Liu ◽  
Li Shu ◽  
...  

Objective. The purpose of this work is to study the mechanism of action of Duhuo Jisheng Decoction (DHJSD) in the treatment of osteoporosis based on the methods of bioinformatics and network pharmacology. Methods. In this study, the active compounds of each medicinal ingredient of DHJSD and their corresponding targets were obtained from TCMSP database. Osteoporosis was treated as search query in GeneCards, MalaCards, DisGeNET, Therapeutic Target Database (TTD), Comparative Toxicogenomics Database (CTD), and OMIM databases to obtain disease-related genes. The overlapping targets of DHJSD and osteoporosis were identified, and then GO and KEGG enrichment analysis were performed. Cytoscape was employed to construct DHJSD-compounds-target genes-osteoporosis network and protein-protein interaction (PPI) network. CytoHubba was utilized to select the hub genes. The activities of binding of hub genes and key components were confirmed by molecular docking. Results. 174 active compounds and their 205 related potential targets were identified in DHJSD for the treatment of osteoporosis, including 10 hub genes (AKT1, ALB, IL6, MAPK3, VEGFA, JUN, CASP3, EGFR, MYC, and EGF). Pathway enrichment analysis of target proteins indicated that osteoclast differentiation, AGE-RAGE signaling pathway in diabetic complications, Wnt signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, calcium signaling pathway, and TNF signaling pathway were the specifically major pathways regulated by DHJSD against osteoporosis. Further verification based on molecular docking results showed that the small molecule compounds (Quercetin, Kaempferol, Beta-sitosterol, Beta-carotene, and Formononetin) contained in DHJSD generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. Conclusion. This study reveals the characteristics of multi-component, multi-target, and multi-pathway of DHJSD against osteoporosis and provides novel insights for verifying the mechanism of DHJSD in the treatment of osteoporosis.


2020 ◽  
Vol 23 (5) ◽  
pp. 419-432
Author(s):  
Yao Wang ◽  
Junbo Zou ◽  
Yanzhuo Jia ◽  
Yulin Liang ◽  
Xiaofei Zhang ◽  
...  

Aim and Objective: The common disease of insomnia has complex and diverse clinical manifestations. Lavender represents an effective treatment of insomnia, but the molecular mechanism underlying the effectiveness of this treatment is not clear. The purpose of this study is to investigate the active components, target proteins and molecular pathways of lavender in the treatment of insomnia, thus explaining its possible mechanism. Materials and Methods: Firstly, 54 active components of lavender were identified by gas chromatography-mass spectrometry (GC-MS). The target protein of lavender was predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and the target protein of insomnia was predicted by the DisGeNET and DrugBank databases. Then, the "component-target-disease" network diagram was constructed using the Cytoscape 3.7.1 software. KEGG and GO enrichments were analyzed using the R statistical language. Finally, the key target proteins were verified by collecting and verifying the target protein GEO data using the Discovery Studio 3.5 molecular docking verification software. Results: 906 target proteins of lavender were predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and 182 insomnia target proteins were predicted by the DisGeNET and DrugBank databases. The results of GO enrichment analysis showed that it included the reaction process of ammonium ion, the regulation of the membrane potential and the secretion of catecholamine, while the results of KEGG enrichment included the calcium signaling pathway, serotonin synapse, morphine addiction and many more. Finally, using the Discovery Studio3.5 molecular docking verification software, it was verified that the key target proteins are ADRB1 and HLA-DRB1. Conclusion: The components in the lavender essential oil include the Ethyl 2-(5-methyl-5-vinyltetrahydrofuran- 2-yl)propan-2-ylcarbonate (0.774); 5-Oxatricyclo[8.2.0.04,6]dodecane, 4,12,12-trimethyl- 9-methylene-, (1R,4R,6R,10S)-(0.147); P-Cymen-7-ol (0.063); .alpha-Humulenem (0.317); Acetic acid, hexyl ester (1.374); etc. The role lavender plays in the treatment of insomnia might be accomplished through the regulation of the key targets ADRB1 and HLA-DRB1.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Liu ◽  
Yihua Fan ◽  
Chunying Tian ◽  
Yue Jin ◽  
Shaopeng Du ◽  
...  

Background. Huangqi Guizhi Wuwu Decoction (HGWD) has been applied in the treatment of joint pain for more than 1000 years in China. Currently, most physicians use HGWD to treat rheumatoid arthritis (RA), and it has proved to have high efficacy. Therefore, it is necessary to explore the potential mechanism of action of HGWD in RA treatment based on network pharmacology and molecular docking methods. Methods. The active compounds of HGWD were collected, and their targets were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and DrugBank database, respectively. The RA-related targets were retrieved by analyzing the differentially expressed genes between RA patients and healthy individuals. Subsequently, the compound-target network of HGWD was constructed and visualized through Cytoscape 3.8.0 software. Protein-protein interaction (PPI) network was constructed to explore the potential mechanisms of HGWD on RA using the plugin BisoGenet of Cytoscape 3.8.0 software. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed in R software (Bioconductor, clusterProfiler). Afterward, molecular docking was used to analyze the binding force of the top 10 active compounds with target proteins of VCAM1, CTNNB1, and JUN. Results. Cumulatively, 790 active compounds and 1006 targets of HGWD were identified. A total of 4570 differentially expressed genes of RA with a p value <0.05 and log 2fold change > 0.5 were collected. Moreover, 739 GO entries of HGWD on RA were identified, and 79 pathways were screened based on GO and KEGG analysis. The core target gene of HGWD in RA treatment was JUN. Other key target genes included FOS, CCND1, IL6, E2F2, and ICAM1. It was confirmed that the TNF signaling pathway and IL-17 signaling pathway are important pathways of HGWD in the treatment of RA. The molecular docking results revealed that the top 10 active compounds of HGWD had a strong binding to the target proteins of VCAM1, CTNNB1, and JUN. Conclusion. HGWD has important active compounds such as quercetin, kaempferol, and beta-sitosterol, which exert its therapeutic effect on multiple targets and multiple pathways.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Zeng ◽  
Longfei Li ◽  
Yu Jin ◽  
Zongzheng Chen ◽  
Lihong Duan ◽  
...  

Objective. To investigate the potential active compounds and underlying mechanisms of Paeonia lactiflora Pall. (PLP) on the treatment of Alzheimer’s disease (AD) based on network pharmacology. Methods. The active components of PLP were collected from Traditional Chinese Medicine System Pharmacology (TCMSP) database, and their possible target proteins were predicted using TCMSP, SwissTargetPrediction, and STITCH databases. The putative AD-related target proteins were identified from Therapeutic Target Database (TTD), GeneCards, and MalaCards database. The compound-target-disease network interactions were established to obtain the key targets about PLP acting on AD by network topology analysis. Then, the function annotation and signaling pathways of key targets were performed by GO and KEGG enrichment analysis using DAVID tools. Finally, the binding capacity between active ingredients and key targets was validated by molecular docking using SystemsDock tools. Results. There were 7 active compounds involving in 151 predicted targets identified in PLP. Besides, a total of 160 AD-related targets were identified. Among these targets, 30 shared targets of PLP and AD were acquired. After topological analysis of the PLP potential target-AD target network, 33 key targets that were highly responsible for the therapeutic effects of PLP on AD were obtained. Further GO and KEGG enrichment analysis showed that these key targets were significantly involved in multiple biological processes and pathways which participated in cell apoptosis and inflammatory response and maintained the function of neurons to accomplish the anti-AD activity. The molecular docking analysis verified that the 7 active compounds had definite affinity with the key targets. Conclusions. The ameliorative effects of PLP on AD were predicted to be associated with regulating neural cell apoptosis, inflammatory response, and neurotrophy via various pathways such as PI3K-Akt signaling pathway, MAPK signaling pathway, and neurotrophin signaling pathway.


2020 ◽  
Vol 22 (9) ◽  
pp. 584-598 ◽  
Author(s):  
Qing Zhang ◽  
Ruolan Li ◽  
Wei Peng ◽  
Mengmeng Zhang ◽  
Jia Liu ◽  
...  

Aim and Objective: This study was designed to explore the active compounds and significant pathways of Guizhi-Shaoyao-Zhimu decoction (GSZD) for treating diabetes mellitus using molecular docking combined with network pharmacology. Materials and Methods: Chemical constituents of GSZD and diabetes-related target proteins were collected from various databases. Then, compounds were filtered by Lipinski’s and Veber’s rules with Discovery studio software. The “Libdock” module was used to carry out molecular docking, and LibDockScores, default cutoff values for hydrogen bonds, and van der Waals interactions were recorded. LibDockScore of the target protein and its prototype ligand was considered as the threshold, and compounds with higher LibDockScores than the threshold were regarded as the active constituents of GSZD. Cytoscape software was used to construct the herb-active molecule-target interaction network of GSZD. ClueGO and CluePedia were applied to enrich the analysis of the biological functions and pathways of GSZD. Results: A total of 275 potential active compounds with 57 possible pathways in GSZD were identified by molecular docking combined with network pharmacology. TEN, INSR, PRKAA2, and GSK3B are the four most important target proteins. Gancaonin E, 3'-(γ,γ-dimethylallyl)-kievitone, aurantiamide, curcumin and 14-O-cinnamoylneoline, could interact with more than 14 of the selected target proteins. Besides, 57 potential pathways of GSZD were identified, such as insulin signaling pathway, metabolites and energy regulation, glucose metabolic process regulation, and positive regulation of carbohydrate metabolic process, etc. Conclusion: These results showed that molecular docking combined with network pharmacology is a feasible strategy for exploring bioactive compounds and mechanisms of Chinese medicines, and GSZD can be used to effectively treat diabetes through multi-components and multi-targets & pathways.


2020 ◽  
Vol 19 (8) ◽  
pp. 1723-1730
Author(s):  
Jun He ◽  
Longjing Wang ◽  
Guanghua Lv ◽  
Yingfang Wei ◽  
Meng Yang ◽  
...  

Purpose: To screen for bioactive anti-functional dyspepsia compounds from Magnoliae officinalis Cortex (Hou Po) and to identify the mechanism(s) of action involved.Methods: The compounds of Hou Po were collected from the literature. The related target proteins were identified from DrugBank. Through  “Libdock” module of Discovery Studio 3.5, the compounds were matched with related target proteins. Taking the Libdock score of the original ligand with target protein as standard, components with higher scores than this standard were considered as potential bioactive compounds. Based on Cytoscape software, the interaction networks of the bioactive compound-target protein complexes were mapped. On the other hand, the online DAVID database was used to analyze the GO enrichment and KEGG pathway of each target.Results: A total of 199 chemical constituents and 13 correlated target proteins were obtained. One hundred and thirty-nine (139) potential bioactive constituents were acquired based on molecular docking. Thirty-one (31) bioactive compounds were selected based on degree values in networkanalysis. “Palmitone” and “magnolignan G” which had the highest degree values were considered promising and leading compounds. The result of gene enrichment analysis showed that the bioactive compounds exerted their effects mainly via “neuroactive ligand-receptor interaction” pathway and “Cholinergic synapse” pathways.Conclusion: Based on molecular docking and network pharmacology technique, the material basis for the use of Hou Po in the treatment of FD has been revealed. This finding provides a useful guide in the development of Hou Po-based anti-FD drugs. Keywords: Magnolia officinalis, Hou Po, Molecular docking, Functional dyspepsia, Network pharmacology


Author(s):  
Shikha Sharma ◽  
Shweta Sharma ◽  
Vaishali Pathak ◽  
Parwinder Kaur ◽  
Rajesh Kumar Singh

Aim: To investigate and validate the potential target proteins for drug repurposing of newly FDA approved antibacterial drug. Background: Drug repurposing is the process of assigning indications for drugs other than the one(s) that they were initially developed for. Discovery of entirely new indications from already approved drugs is highly lucrative as it minimizes the pipeline of the drug development process by reducing time and cost. In silico driven technologies made it possible to analyze molecules for different target proteins which are not yet explored. Objective: To analyze possible targets proteins for drug repurposing of lefamulin and their validation. Also, in silico prediction of novel scaffolds from lefamulin has been performed for assisting medicinal chemists in future drug design. Methods: A similarity-based prediction tool was employed for predicting target protein and further investigated using docking studies on PDB ID: 2V16. Besides, various in silico tools were employed for prediction of novel scaffolds from lefamulin using scaffold hopping technique followed by evaluation with various in silico parameters viz., ADME, synthetic accessibility and PAINS. Results: Based on the similarity and target prediction studies, renin is found as the most probable target protein for lefamulin. Further, validation studies using docking of lefamulin revealed the significant interactions of lefamulin with the binding pocket of the target protein. Also, three novel scaffolds were predicted using scaffold hopping technique and found to be in the limit to reduce the chances of drug failure in the physiological system during the last stage approval process. Conclusion: To encapsulate the future perspective, lefamulin may assist in the development of the renin inhibitors and, also three possible novel scaffolds with good pharmacokinetic profile can be developed into both as renin inhibitors and for bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document