Plasma Paraoxonase-1, Oxidized Low-Density Lipoprotein and Lipid Peroxidation Levels in Gout Patients

2011 ◽  
Vol 61 (2) ◽  
pp. 461-466 ◽  
Author(s):  
Xing-Liang Jiang ◽  
Min Li ◽  
Jing-Guo Zhou ◽  
Qi-Bin Yang ◽  
Li-Jun Du ◽  
...  
2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Chandrakala Aluganti Narasimhulu ◽  
Dmitry Litvinov ◽  
Danielle Jones ◽  
Chittoor Sai-Sudhakar ◽  
Michael Fristenberg ◽  
...  

Hypothesis: Oxidized low density lipoprotein (Ox-LDL) has properties that profoundly affect cardiovascular function. We hypothesized that Ox-LDL is likely to be formed in the left ventricular blood (LVB) when the heart is subjected to ischemic conditions and the ejection fraction (EF) is low. We speculated whether “stagnation” of LDL in the LV could result in increased formation of Ox-LDL. Objective: We studied whether there is an increased level of Ox-LDL in the LVB as opposed to peripheral blood (PB), and whether its presence correlated with the EF. Also we examined whether a higher level of Ox-LDL negatively correlated with the activity of paraoxonase 1 (PON 1). Methods: Following the Institutional Review Board (IRB) approval, 62 HF patients were enrolled in the study. All patients underwent pre-operative transthoracic echocardiographic assessment of ventricular function. Left ventricular ejection fractions were determined using the Simpsons bi-plane technique. 2ml of LVB and 5ml of PB samples were taken before coronary artery bypass surgery, or a surgery with replacement of mitral, aortic or tricuspid valve. Blood level of Ox-LDL was determined by ELISA (Mercodia), and PON 1 activity was determined by the rate of conversion of its substrate p-nitrophenyl acetate into p-nitrophenol. Results: The result showed significant increase in Ox-LDL in LVB as compared to PB (p=0.032) in HF subjects even when EF was near normal. There was no significant increase in subjects with lower EF. In contrast, Ox-LDL levels increased in the PB of subjects with lower EF and reached those of LVB. We also noticed that there was a statistically significant negative correlation between EF and Ox-LDL levels in both LVB and PB (p < 0.05). The activity of PON1, an antioxidant enzyme that protects LDL from oxidation showed decreased levels both in LV blood as well as in PB with decreased EF. It was observed that there was a statistically significant difference in PON1 levels between LV and PB of subjects having EF>60% (p = 0.03). Conclusions: In conclusion the results suggest that there might be oxidative stress associated with LVB even when the EF is not compromised. In contrast, the increase in PB Ox-LDL with poor EF might suggest that the low blood flow to peripheral tissues and end organs also might contribute to increased oxidative stress. The results also might suggest that persistent oxidative stress could have affected the clearance mechanisms of Ox-LDL.


2011 ◽  
Vol 29 (7) ◽  
pp. 549-554 ◽  
Author(s):  
Serap Yıldırım ◽  
Sedat Akar ◽  
Mutlu Kuyucu ◽  
Abdulkadir Yıldırım ◽  
Şenol Dane ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 58-63
Author(s):  
Narjes Rezaei ◽  
Zahra Zaherijamil ◽  
Shirin Moradkhani ◽  
Massoud Saidijam ◽  
Iraj khodadadi ◽  
...  

Background: It is shown that kiwifruit elevates serum high-density lipoprotein cholesterol (HDL-C) levels and exhibits beneficial effects on human health due to its antioxidant potential. Objectives: This study aimed to investigate the impact of kiwifruit on the activity of the paraoxonase 1 (PON1) enzyme, as a main antioxidant enzyme in HDL functionality, in a high-fat diet (HFD). Methods: To this end, 42 male Syrian hamsters were divided into 6 groups including hamsters receiving a normal diet (the control normal group), a regular diet supplemented with kiwifruit at two concentrations (i.e., 1.86 g/kg and 3.73 g/kg), a HFD comprised of 15% butterfat + 0.05% cholesterol (the control high-fat group), and a HFD supplemented with kiwifruit at two concentrations (i.e., 1.86 and 3.73 g/kg) for 8 weeks. Results: The results showed that supplementation of kiwifruit to the HFD increased the levels of HDL-C and remarkably reduced the concentrations of oxidized low-density lipoprotein (ox-LDL) and malondialdehyde (MDA) compared with the control-HF group. In addition, the paraoxonase activity of PON1 significantly increased in HFD supplemented with kiwifruit (1.86 g/kg), and finally, arylesterase (ARE) activity increased in all treated groups when compared with untreated groups. Conclusion: Our findings suggested that kiwifruit can improve the lipid profile and prevent oxidative stress-induced by lipid peroxidation in hamsters receiving HFD, thus increasing the ARE and paraoxonase activities of PON1.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192392 ◽  
Author(s):  
Serena Benedetti ◽  
Simona Catalani ◽  
Federica Peda ◽  
Francesca Luchetti ◽  
Roberto Citarella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document