scholarly journals Paper of the October Issue of Stem Cell Reviews and Reports Addresses a Role of Prenatal Exposure of Murine Testicular Stem Cells to Endocrine Disrupting Chemicals that Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Life

2020 ◽  
Vol 16 (5) ◽  
pp. 811-811
Author(s):  
Mariusz Z. Ratajczak
2020 ◽  
Vol 26 (2) ◽  
pp. 214-246 ◽  
Author(s):  
Pilar García-Peñarrubia ◽  
Antonio J Ruiz-Alcaraz ◽  
María Martínez-Esparza ◽  
Pilar Marín ◽  
Francisco Machado-Linde

Abstract BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota–immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.


2016 ◽  
Vol 10 (1) ◽  
pp. 76-97 ◽  
Author(s):  
Dan-Ping Hu ◽  
Wen-Yang Hu ◽  
Lishi Xie ◽  
Ye Li ◽  
Lynn Birch ◽  
...  

Substantial evidences from epidemiological and animal-based studies indicate that early exposure to endocrine disrupting chemicals (EDCs) during the developmental stage results in a variety of disorders including cancer. Previous studies have demonstrated that early estrogen exposure results in life-long reprogramming of the prostate gland that leads to an increased incidence of prostatic lesions with aging. We have recently documented that bisphenol A (BPA), one of the most studied EDCs with estrogenic activity has similar effects in increasing prostate carcinogenic potential, supporting the connection between EDCs exposure and prostate cancer risk. It is well accepted that stem cells play a crucial role in development and cancer. Accumulating evidence suggest that stem cells are regulated by extrinsic factors and may be the potential target of hormonal carcinogenesis. Estrogenic EDCs which interfere with normal hormonal signaling may perturb prostate stem cell fate by directly reprogramming stem cells or breaking down the stem cell niche. Transformation of stem cells into cancer stem cells may underlie cancer initiation accounting for cancer recurrence, which becomes a critical therapeutic target of cancer management. We therefore propose that estrogenic EDCs may influence the development and progression of prostate cancer through reprogramming and transforming the prostate stem and early stage progenitor cells. In this review, we summarize our current studies and have updated recent advances highlighting estrogenic EDCs on prostate carcinogenesis by possible targeting prostate stem/progenitor cells. Using novel stem cell assays we have demonstrated that human prostate stem/progenitor cells express estrogen receptors (ER) and are directly modulated by estrogenic EDCs. Moreover, employing anin vivohumanized chimeric prostate model, we further demonstrated that estrogenic EDCs initiate and promote prostatic carcinogenesis in an androgen-supported environment. These findings support our hypothesis that prostate stem/progenitor cells may be the direct targets of estrogenic EDCs as a consequence of developmental exposure which carry permanent reprogrammed epigenetic and oncogenic events and subsequently deposit into cancer initiation and progression in adulthood.


2017 ◽  
Vol 35 (06) ◽  
pp. 481-486 ◽  
Author(s):  
Hoda Elkafas ◽  
Yang Qiwei ◽  
Ayman Al-Hendy

AbstractUterine fibroids (UFs) are the most frequent gynecologic tumors, affecting 70 to 80% of women over their lifetime, Although these tumors are benign, they can cause significant morbidity and may require invasive treatments such as myomectomy and hysterectomy in premenopausal women at a cost of up to $34 billion per year. Many risk factors for these tumors have been identified, including environmental exposures to endocrine-disrupting chemicals such as genistein and diethylstilbestrol (and other environmental agents) resulting in hyper-responsiveness to hormone in the adult uterus and promotion of hormone-dependent UFs. Although the molecular mechanisms underlying the pathogenesis of UFs is largely unknown, a growing body of evidence implicates unfavorable early-life environmental exposure and multiple biological pathways express as potentially import contributors. In this article, we will review the role of genetic and epigenetics in the conversion of myometrial stem cells to tumor (fibroid) initiating cells, and their role in UF development.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


2011 ◽  
pp. 35-55 ◽  
Author(s):  
Yoshiko Matsumoto ◽  
Hiroko Iwasaki ◽  
Toshio Suda

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 91-91
Author(s):  
Yuichi Hirata ◽  
Kazuhiro Furuhashi ◽  
Hiroshi Ishi ◽  
Hao-Wei Li ◽  
Sandra Pinho ◽  
...  

Abstract A crucial player in immune regulation, FoxP3+ regulatory T cells (Tregs) are drawing attention for their heterogeneity and noncanonical functions. For example, specific subsets of Tregs in the adipose tissue control metabolic indices; muscle Tregs potentiate muscle repair, and lung Tregs prevent tissue damage. These studies, together with a previous finding that Tregs are enriched in the primary site for hematopoiesis, the bone marrow (BM), prompted us to examine whether there is a special Treg population which controls hematopoietic stem cells (HSCs). We showed that HSCs within the BM were frequently adjacent to distinctly activated FoxP3+ Tregs which highly expressed an HSC marker, CD150. Moreover, specific reduction of BM Tregs achieved by conditional deletion of CXCR4in Tregs, increased reactive oxygen species (ROSs) in HSCs. The reduction of BM Tregs further induced loss of HSC quiescence and increased HSC numbers in a manner inhibited by anti-oxidant treatment. Additionally, this increase in HSC numbers in mice lacking BM Tregs was reversed by transfer of CD150high BM Tregs but not of CD150low BM Tregs. These results indicate that CD150high niche-associated Tregs maintain HSC quiescence and pool size by preventing oxidative stress. We next sought to identify an effector molecule of niche Tregs which regulates HSCs. Among molecules highly expressed by niche Tregs, we focused on CD39 and CD73, cell surface ecto-enzymes which are required for generation of extracellular adenosine, because 1) CD39highCD73high cells within the BM were prevalent among CD150high Tregs and 2) HSCs highly expressed adenosine 2a receptors (A2AR). We showed that both conditional deletion of CD39 in Tregs and in vivo A2AR antagonist treatment induced loss of HSC quiescence and increased HSC pool size in a ROS-dependent manner, which is consistent with the findings in mice lacking BM Tregs. In addition, transfer of CD150high BM Tregs but not of CD150low BM Tregs reversed the increase in HSC numbers in FoxP3cre CD39flox mice. The data indicate that niche Treg-derived adenosine regulates HSCs. We further investigated the protective role of niche Tregs and adenosine in radiation injury against HSCs. Conditional deletion of CD39 in Tregs increased radiation-induced HSC apoptosis. Conversely, transfer of as few as 15,000 CD150high BM Tregs per B6 mouse (iv; day-1) rescued lethally-irradiated (9.5Gy) mice by preventing hematopoiesis failure. These observations indicate that niche Tregs protect HSCs from radiation stress. Finally, we investigated the role of niche Tregs in allogeneic (allo-) HSC transplantation. Our previous study showed that allo-hematopoietic stem and progenitor cells but not allo-Lin+ cells persisted in the BM of non-conditioned immune-competent recipients without immune suppression in a manner reversed by systemic Treg depletion1. This observation suggests that HSCs have a limited susceptibility to immune attack, as germline and embryonic stem cells are located within immune privileged sites. Because the study employed systemic Treg depletion and non-conditioned recipients, it remains unknown whether niche Tregs play a critical role in immune privilege of HSCs and in allo-HSC engraftment following conditioning. We showed here that the reduction of BM Tregs and conditional deletion of CD39 in Tregs abrogated allo-HSC persistence in non-conditioned immune-competent mice as well as allo-HSC engraftment following nonmyeloablative conditioning. Furthermore, transfer of CD150high BM Tregs but not of other Tregs (15,000 cells/recipient; day -2) significantly improved allo-HSC engraftment. This effect of niche Treg transfer is noteworthy given that 1-5 million Tregs per mouse were required in case of transfer of spleen or lymph node Tregs. These observations suggest that niche Tregs maintain immune privilege of HSCs and promote allo-HSC engraftment. In summary, our studies identify a unique niche-associated Treg subset and adenosine as regulators of HSC quiescence, numbers, stress response, engraftment, and immune privilege, further highlighting potential clinical utility of niche Treg transfer in radiation-induced hematopoiesis failure and in allo-HSC engraftment (under revision in Cell Stem Cell). 1 Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature474, 216-219, doi:10.1038/nature10160 (2011). Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Yanqing Gong ◽  
Jane Hoover-Plow ◽  
Ying Li

Ischemic heart disease, including myocardial infarction (MI), is the primary cause of death throughout the US. Granulocyte colony-stimulating factor (G-CSF) is used to mobilize hematopoietic progenitor and stem cells (HPSC) to improve cardiac recovery after MI. However, poor-mobilization to G-CSF is observed in 25% of patients and 10-20% of healthy donors. Therefore, a better understanding of the underlying mechanisms regulating G-CSF-induced cardiac repair may offer novel approaches for strengthening stem cell-mediated therapeutics. Our previous studies have identified an essential role of Plg in HPSC mobilization from bone marrow (BM) in response to G-CSF. Here, we investigate the role of Plg in G-CSF-stimulated cardiac repair after MI. Our data show that G-CSF significantly improves cardiac tissue repair including increasing neovascularization in the infarct area, and improving ejection fraction and LV internal diameter by echocardiogram in wild-type mice. No improvement in tissue repair and heart function by G-CSF is observed in Plg -/- mice, indicating that Plg is required for G-CSF-regulated cardiac repair after MI. To investigate whether Plg regulates HPSC recruitment to ischemia area, bone marrow transplantion (BMT) with EGFP-expressing BM cells was performed to visualize BM-derived stem cells in infarcted tissue. Our data show that G-CSF dramatically increases recruitment of GFP+ cells (by 16 fold) in WT mice but not in Plg -/- mice, suggesting that Plg is essential for HPSC recruitment from BM to the lesion sites after MI. In further studies, we investigated the role of Plg in the regulation of SDF-1/CXCR-4 axis, a major regulator for HPSC recruitment. Our results show that G-CSF significantly increases CXCR-4 expression in infarcted area in WT mice. While G-CSF-induced CXCR-4 expression is markedly decreased (80%) in Plg -/- mice, suggesting Plg may regulate CXCR-4 expression during HSPC recruitment to injured heart. Interestingly, Plg does not affect SDF-1 expression in response to G-CSF treatment. Taken together, our findings have identified a critical role of Plg in HSPC recruitment to the lesion site and subsequent tissue repair after MI. Thus, targeting Plg may offer a new therapeutic strategy to improve G-CSF-mediated cardiac repair after MI.


2020 ◽  
Vol 21 (6) ◽  
pp. 2078 ◽  
Author(s):  
Laura Lucaccioni ◽  
Viola Trevisani ◽  
Lucia Marrozzini ◽  
Natascia Bertoncelli ◽  
Barbara Predieri ◽  
...  

Puberty is the process of physical changes between childhood and adulthood during which adolescents reach sexual maturity and become capable of reproduction. It is considered one of the main temporal windows of susceptibility for the influence of the endocrine-disrupting chemicals (EDCs). EDCs may act as single chemical agents or as chemical mixtures; they can be pubertal influencers, accelerating and anticipating the processing of maturation of secondary sexual characteristics. Moreover, recent studies have started to point out how exposure to EDCs during puberty may predispose to breast cancer later in life. In fact, the estrogen-mimicking endocrine disruptors (EEDs) may influence breast tissue development during puberty in two main ways: the first is the action on the proliferation of the breast stromal cells, the second concerns epigenetic mechanisms. The aim of this mini-review was to better highlight what is new and what is not completely known regarding the role of EDCs during puberty.


Sign in / Sign up

Export Citation Format

Share Document