scholarly journals Application of ADSCs and their Exosomes in Scar Prevention

Author(s):  
Cong Li ◽  
Shuqiang Wei ◽  
Quanchen Xu ◽  
Yu Sun ◽  
Xuchao Ning ◽  
...  

AbstractScar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar formation. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring stage in combination with recent studies. Graphical Abstract

2013 ◽  
Vol 40 (5) ◽  
pp. 496 ◽  
Author(s):  
Jung Dug Yang ◽  
Dong Sik Choi ◽  
Young Kyoo Cho ◽  
Taek Kyun Kim ◽  
Jeong Woo Lee ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 095-104
Author(s):  
IM Cardoso-Daodu ◽  
CP Azubuike ◽  
MO Ilomuanya

Chronic wounds occur when one wound healing process or a sequence of wound healing events are affected resulting in slow healing of the wound thereby placing the patient in deep pain. Various diseases and conditions can delay the process of wound healing. Wound healing can be classified into four main stages: hemostasis, inflammation, remodeling, and scar tissue formation with each phase overlapping one another. The skin is the largest organ in the body. It protects the entire external surface of the human body and is the primary site of interaction with the outside environment. There is therefore a need to fabricate an ideal dressing through scientific research and investigations. Hydrogels are a three-dimensional network of hydrophilic polymers that can swell in water and absorb copious amounts of water while maintaining their structure because of their chemical or physical crosslinking of individual polymer chains. A hydrogel must be composed of at least 10% water. Hydrogels possess the flexibility and water percentage which is remarkably like tissues. They are biocompatible and biodegradable which makes them ideal for dermal wound healing.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Álvaro Sierra-Sánchez ◽  
Kevin H. Kim ◽  
Gonzalo Blasco-Morente ◽  
Salvador Arias-Santiago

AbstractWound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers’ purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient’s health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1134 ◽  
Author(s):  
Jiyoon Ryu ◽  
Colleen Loza ◽  
Huan Xu ◽  
Min Zhou ◽  
Jason Hadley ◽  
...  

Adiponectin is an adipokine with anti-insulin resistance and anti-inflammatory functions. It exists in serum predominantly in three multimeric complexes: the trimer, hexamer, and high-molecular-weight forms. Although recent studies indicate that adiponectin promotes wound healing in rodents, its role in the wound healing process in humans is unknown. This study investigated the expression levels of adiponectin in adipose tissue and serum of women who experienced either normal or delayed wound healing after abdominal plastic surgery. We found that obese women with delayed healing had slightly lower total adiponectin levels in their adipose tissue compared with women with normal healing rates. Among the different isoforms of adiponectin, levels of the trimer forms were significantly reduced in adipose tissue, but not the serum, of obese women with delayed healing compared to women who healed normally. This study provides clinical evidence for a potential role of low-molecular-weight oligomers of adiponectin in the wound healing process as well as implications for an autocrine and/or paracrine mechanism of adiponectin action in adipose tissues.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Suman Kanji ◽  
Hiranmoy Das

Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sabrina Valente ◽  
Carmen Ciavarella ◽  
Emanuela Pasanisi ◽  
Francesca Ricci ◽  
Andrea Stella ◽  
...  

Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.


2016 ◽  
Vol 84 (1) ◽  
pp. e54
Author(s):  
Yohei Iwata ◽  
Yuichi Hasebe ◽  
Seiji Hasegawa ◽  
Hiroshi Mizutani ◽  
Satoru Nakata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document