scholarly journals ‘Indicator’ carbonaceous phyllite/graphitic schist in the Archean Kundarkocha gold deposit, Singhbhum orogenic belt, eastern India: Implications for gold mineralization vis-a-vis organic matter

2014 ◽  
Vol 123 (7) ◽  
pp. 1693-1703 ◽  
Author(s):  
P R Sahoo ◽  
A S Venkatesh
Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 34 ◽  
Author(s):  
Vera Korshunova ◽  
Marina Charykova

The success of prospecting for gold deposit in overburdened areas based on the using of secondary dispersion haloes mostly depends on the chosen method of geochemical survey (sampling horizon, sample preparation for analysis, etc.). At the same time, the geochemistry of gold in the supergene zone is insufficiently studied, especially it’s migration and concentration in association with other elements in surface sediments due to weathering of gold-bearing ore. The main aim of the study presented in this paper is the determination of mobile forms of gold and pathfinder elements (As, Cu, Ni, Ag, Zn, Pb, Se, Sb, Mo, Bi, and Te) in podzol soil and moraine in the areas of Karelia region with known gold mineralization. As a result of conducted experiments it was determined that the main mobile forms of gold are water-soluble and bound to organic matter, while pathfinder elements bound preferably to Fe and Mn(hydr)oxides and to organic matter. As gold and some pathfinders bind with organic matter, this form was considered in more detail, and the elements’ interaction with humic and fulvic acids was investigated. In addition, it was determined that the studied elements are quite “mobile” because the percentage of the mobile form in their total content was mostly more than 50%. The main features of the elements’ migration and concentration were identified in surface sediments of the study areas.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 133 ◽  
Author(s):  
Si-Chen Sun ◽  
Liang Zhang ◽  
Rong-Hua Li ◽  
Ting Wen ◽  
Hao Xu ◽  
...  

The Zhengchong gold deposit, with a proven gold reserve of 19 t, is located in the central part of Jiangnan Orogenic Belt (JOB), South China. The orebodies are dominated by NNE- and NW- trending auriferous pyrite-arsenopyrite-quartz veins and disseminated pyrite-arsenopyrite-sericite-quartz alteration zone, structurally hosted in the Neoproterozoic epimetamorphic terranes. Three stages of hydrothermal alteration and mineralization have been defined at the Zhengchong deposit: (i) Quartz–auriferous arsenopyrite and pyrite; (ii) Quartz–polymetallic sulfides–native gold–minor chlorite; (iii) Barren quartz–calcite vein. Both invisible and native gold occurred at the deposit. Disseminated arsenopyrite and pyrite with invisible gold in them formed at an early stage in the alteration zones have generally undergone syn-mineralization plastic-brittle deformation. This resulted in the generation of hydrothermal quartz, chlorite and sulfides in pressure shadows around the arsenopyrite and the formation of fractures of the arsenopyrite. Meanwhile, the infiltration of the ore-forming fluid carrying Sb, Cu, Zn, As and Au resulted in the precipitation of polymetallic sulfides and free gold. The X-ray elements mapping of arsenopyrite and spot composition analysis of arsenopyrite and chlorite were carried out to constrain the ore-forming physicochemical conditions. The results show that the early arsenopyrite and invisible gold formed at 322–397 °C with lgf(S2) ranging from −10.5 to −6.7. The crack-seal structure of the ores indicates cyclic pressure fluctuations controlled by fault-valve behavior. The dramatic drop of pressure resulted in the phase separation of ore-forming fluids. During the phase separation, the escape of H2S gas caused the decomposition of the gold-hydrosulfide complex, which further resulted in the deposition of the native gold. With the weakening of the gold mineralization, the chlorite formed at 258–274 °C with lgf(O2) of −50.9 to −40.1, as constrained by the results from mineral thermometer.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Shun-Da Li ◽  
Zhi-Gao Wang ◽  
Ke-Yong Wang ◽  
Wen-Yan Cai ◽  
Da-Wei Peng ◽  
...  

The Jinchang gold deposit is located in the eastern Yanji–Dongning Metallogenic Belt in Northeast China. The orebodies of the deposit are hosted within granite, diorite, and granodiorite, and are associated with gold-mineralized breccia pipes, disseminated gold in ores, and fault-controlled gold-bearing veins. Three paragenetic stages were identified: (1) early quartz–pyrite–arsenopyrite (stage 1); (2) quartz–pyrite–chalcopyrite (stage 2); and (3) late quartz–pyrite–galena–sphalerite (stage 3). Gold is hosted predominantly within pyrite. Pyrite separated from quartz–pyrite–arsenopyrite cement within the breccia-hosted ores (Py1) yield a Re–Os isochron age of 102.9 ± 2.7 Ma (MSWD = 0.17). Pyrite crystals from the quartz–pyrite–chalcopyrite veinlets (Py2) yield a Re–Os isochron age of 102.0 ± 3.4 Ma (MSWD = 0.2). Pyrite separated from quartz–pyrite–galena–sphalerite veins (Py3) yield a Re–Os isochron age of 100.9 ± 3.1 Ma (MSWD = 0.019). Re–Os isotopic analyses of the three types of auriferous pyrite suggest that gold mineralization in the Jinchang Deposit occurred at 105.6–97.8 Ma (includes uncertainty). The initial 187Os/188Os values of the pyrites range between 0.04 and 0.60, suggesting that Os in the pyrite crystals was derived from both crust and mantle sources.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


Sign in / Sign up

Export Citation Format

Share Document