scholarly journals Process and Mechanism of Gold Mineralization at the Zhengchong Gold Deposit, Jiangnan Orogenic Belt: Evidence from the Arsenopyrite and Chlorite Mineral Thermometers

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 133 ◽  
Author(s):  
Si-Chen Sun ◽  
Liang Zhang ◽  
Rong-Hua Li ◽  
Ting Wen ◽  
Hao Xu ◽  
...  

The Zhengchong gold deposit, with a proven gold reserve of 19 t, is located in the central part of Jiangnan Orogenic Belt (JOB), South China. The orebodies are dominated by NNE- and NW- trending auriferous pyrite-arsenopyrite-quartz veins and disseminated pyrite-arsenopyrite-sericite-quartz alteration zone, structurally hosted in the Neoproterozoic epimetamorphic terranes. Three stages of hydrothermal alteration and mineralization have been defined at the Zhengchong deposit: (i) Quartz–auriferous arsenopyrite and pyrite; (ii) Quartz–polymetallic sulfides–native gold–minor chlorite; (iii) Barren quartz–calcite vein. Both invisible and native gold occurred at the deposit. Disseminated arsenopyrite and pyrite with invisible gold in them formed at an early stage in the alteration zones have generally undergone syn-mineralization plastic-brittle deformation. This resulted in the generation of hydrothermal quartz, chlorite and sulfides in pressure shadows around the arsenopyrite and the formation of fractures of the arsenopyrite. Meanwhile, the infiltration of the ore-forming fluid carrying Sb, Cu, Zn, As and Au resulted in the precipitation of polymetallic sulfides and free gold. The X-ray elements mapping of arsenopyrite and spot composition analysis of arsenopyrite and chlorite were carried out to constrain the ore-forming physicochemical conditions. The results show that the early arsenopyrite and invisible gold formed at 322–397 °C with lgf(S2) ranging from −10.5 to −6.7. The crack-seal structure of the ores indicates cyclic pressure fluctuations controlled by fault-valve behavior. The dramatic drop of pressure resulted in the phase separation of ore-forming fluids. During the phase separation, the escape of H2S gas caused the decomposition of the gold-hydrosulfide complex, which further resulted in the deposition of the native gold. With the weakening of the gold mineralization, the chlorite formed at 258–274 °C with lgf(O2) of −50.9 to −40.1, as constrained by the results from mineral thermometer.

2012 ◽  
Vol 49 (10) ◽  
pp. 1154-1176
Author(s):  
Martin Aucoin ◽  
Georges Beaudoin ◽  
Robert A. Creaser ◽  
Paul Archer

The Corvet Est gold deposit is hosted by Archean rocks of the Superior Province in the James Bay region, northern Quebec, Canada. The Marco zone is hosted by amphibolite-grade, strongly foliated volcanic rocks and consists of disseminated gold, with an apparent thickness ranging from 1.8 to 39.5 m and gold grades up to 23 g·t–1 over 1 m, that is continuous along strike for ∼1.3 km. The lithotectonic sequence comprises footwall basaltic andesite amphibolite overlain by a lenticular unit of metadacite and then by hanging-wall basaltic andesite amphibolite, all intruded by quartz–feldspar porphyry dikes. Dacite, basaltic andesite amphibolite, and quartz–feldspar porphyry show a calc-alkaline to transitional affinity and plot in the plate margin arc basalt field, with typical volcanic arc trace element patterns. Mineralization consists of pyrite, arsenopyrite, pyrrhotite, chalcopyrite, and gold, disseminated in deformed dacite, in andesite amphibolite, and in quartz–feldspar porphyry dikes. Dacite and andesite display weak alteration characterized by silicification. Native gold forms inclusions in metamorphic quartz, garnet, feldspar, arsenopyrite, and pyrite or free grains interstitial to quartz, feldspar, pyrite, chalcopyrite, and arsenopyrite. Free gold in late quartz veins cut the sericitized metamorphic fabric. Inclusion and interstitial native gold within minerals annealed during metamorphism shows that gold mineralization is pre- to syn-metamorphic, with some gold remobilized in later veins. Rhenium–osmium dating of arsenopyrite yields an isochron age of 2663 ± 13 Ma for mineralization and a weighted average model age of 2632 ± 7 Ma for arsenopyrite formed during peak metamorphism. The ∼2663 Ma arsenopyrite has a low initial 187Os/188Os of 0.19 ± 0.10, suggesting a juvenile crust or a mantle Os source. The sulfur isotope composition of Marco zone pyrite and arsenopyrite shows that sulfur could have been leached from its volcanic host rocks or from reduction of Archean seawater. The Corvet Est deposit is interpreted to be an orogenic gold deposit (2663 Ma) deformed and recrystallized during amphibolite-grade metamorphism (2632 Ma).


Author(s):  
Kai Zhao ◽  
Huazhou Yao ◽  
Jianxiong Wang ◽  
Ghebsha Fitwi Ghebretnsae ◽  
Wenshuai Xiang ◽  
...  

The Koka gold deposit is located in the Elababu shear zone between the Nakfa terrane and the Adobha Abiy terrane, NW Eritrea. Based on the paragenetic study two main stages of gold mineralization were identified in the Koka gold deposit: 1) an early stage of pyrite-chalcopyrite-sphalerite-galena-gold-quartz vein; and 2) a second stage of pyrite-quartz veins. NaCl-aqueous inclusions, CO2-rich inclusions, and three-phase CO2-H2O inclusions occur in the quartz veins at Koka. The ore-bearing quartz veins formed at 268℃, from NaCl-CO2-H2O(-CH4) fluids averaging 5 wt% NaCl eq. The ore-forming mechanisms include fluid immiscibility during stage I, and mixing with meteoric water during stage II. Oxygen, hydrogen and carbon isotopes suggest that the ore-forming fluids originated as mixtures of metamorphic water, meteoric water and magmatic water, whereas sulfur isotope suggest an igneous origin. Features of geology and ore-forming fluid at Koka deposit are similar to those of orogenic gold deposits, suggesting the Koka deposit might be an orogenic gold deposit related to granite.


2019 ◽  
Vol 114 (6) ◽  
pp. 1057-1094 ◽  
Author(s):  
Stéphane De Souza ◽  
Benoît Dubé ◽  
Patrick Mercier-Langevin ◽  
Vicki McNicoll ◽  
Céline Dupuis ◽  
...  

Abstract The Canadian Malartic stockwork-disseminated gold deposit is an Archean world-class deposit located in the southern Abitibi greenstone belt. It contains over 332.8 tonnes (t; 10.7 Moz) of Au at a grade of 0.97 ppm, in addition to 160 t (5.14 Moz) of past production (1935–1981). Although the deposit is partly situated within the Larder Lake-Cadillac fault zone, most of the ore occurs up to ~1.5 km to the south of the fault zone. The main hosts of the mineralized zones are greenschist facies turbiditic graywacke and mudstone of the Pontiac Group (~2685–2682 Ma) and predominantly subalkaline ~2678 Ma porphyritic quartz monzodiorite and granodiorite. These intrusions were emplaced during an episode of clastic sedimentation and alkaline to subalkaline magmatism known as the Timiskaming assemblage (<2680–2670 Ma in the southern Abitibi). The orebodies define two main mineralized trends, which are oriented subparallel to the NW-striking S2 cleavage and the E-striking, S-dipping Sladen fault zone. This syn- to post-D2 ductile-brittle to brittle Sladen fault zone is mineralized for more than 3 km along strike. The ore mainly consists of disseminated pyrite in stockworks and replacement zones, with subordinate auriferous quartz veins and breccia. Gold is associated with pyrite and traces of tellurides defining an Au-Te-W ± Ag-Bi-Mo-Pb signature. The orebodies are zoned outward, and most of the higher-grade (>1 ppm Au) ore was deposited as a result of iron sulfidation from silicates and oxides and Na-K metasomatism in carbonatized rocks. The alteration footprint comprises a proximal alteration envelope (K- or Na-feldspar-dolomite-calcite-pyrite ± phlogopite). This proximal alteration zone transitions to an outer shell of altered rocks (biotite-calcite-phengitic white mica), which hosts sub-ppm gold grades and reflects decreasing carbonatization, sulfidation, and aNa+/aH+ or aK+/aH+ of the ore fluid. Gold mineralization, with an inferred age of ~2664 Ma (Re-Os molybdenite), was contemporaneous with syn- to late-D2 peak metamorphism in the Pontiac Group; it postdates sedimentation of the Timiskaming assemblage along the Larder Lake-Cadillac fault zone (~2680–2669 Ma) and crystallization of the quartz monzodiorite. These chronological relationships agree with a model of CO2-rich auriferous fluid generation in amphibolite facies rocks of the Pontiac Group and gold deposition in syn- to late-D2 structures in the upper greenschist to amphibolite facies. The variable geometry, rheology, and composition of the various intrusive and sedimentary rocks have provided strain heterogeneities and chemical gradients for the formation of structural and chemical traps that host the gold. The Canadian Malartic deposit corresponds to a mesozonal stockwork-disseminated replacement-type deposit formed within an orogenic setting. The predominance of disseminated replacement ore over fault-fill and extensional quartz-carbonate vein systems suggests that the mineralized fracture networks remained relatively permeable and that fluids circulated at a near-constant hydraulic gradient during the main phase of auriferous hydrothermal alteration.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 190 ◽  
Author(s):  
Yu-Ji Wei ◽  
Li-Qiang Yang ◽  
Jian-Qiu Feng ◽  
Hao Wang ◽  
Guang-Yao Lv ◽  
...  

The Sizhuang gold deposit with a proven gold resource of >120 t, located in northwest Jiaodong Peninsula in China, lies in the southern part of the Jiaojia gold belt. Gold mineralization can be divided into altered rock type, auriferous quartz vein type, and sulfide-quartz veinlet in K-feldspar altered granite. According to mineral paragenesis and mineral crosscutting relationships, three stages of metal mineralization can be identified: early stage, main stage, and late stage. Gold mainly occurs in the main stage. The petrography and microthermometry of fluid inclusion shows three types of inclusions (type 1 H2O–CO2 inclusions, type 2 aqueous inclusions, and type 3 CO2 inclusions). Early stage quartz-hosted inclusions have a trapped temperatures range 303–390 °C. The gold-rich main stage contains a fluid-inclusion cluster with both type 1 and 2 inclusions (trapped between 279 and 298 °C), and a wide range of homogenization temperatures of CO2 occurs to the vapor phase (17.6 to 30.5 °C). The late stage calcite only contains type 1 inclusions with homogenization temperatures between 195 and 289 °C. With evidences from the H–O isotope data and the study of water–rock interaction, the metamorphic water of the Jiaodong Group is considered to be the dominating source for the ore-forming fluid. The ore-fluid belonged to a CO2–H2O–NaCl system with medium-low temperature (160–360 °C), medium-low salinity (3.00–11.83 wt% NaCl eq.), and low density (1.51–1.02 g/cm3). Fluid immiscibility caused by pressure fluctuation is the key mechanism in inducing gold mineralization in the Sizhuang gold deposit.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 201 ◽  
Author(s):  
Kai Zhao ◽  
Huazhou Yao ◽  
Jianxiong Wang ◽  
Ghebsha Fitwi Ghebretnsae ◽  
Wenshuai Xiang ◽  
...  

: The Koka gold deposit is located in the Elababu shear zone between the Nakfa terrane and the Adobha Abiy terrane, NW Eritrea. Based on a paragenetic study, two main stages of gold mineralization were identified in the Koka gold deposit: (1) an early stage of pyrite–chalcopyrite–sphalerite–galena–gold–quartz vein; and (2) a second stage of pyrite–quartz veins. NaCl-aqueous inclusions, CO2-rich inclusions, and three-phase CO2–H2O inclusions occur in the quartz veins at Koka. The ore-bearing quartz veins formed at 268 °C from NaCl–CO2–H2O(–CH4) fluids averaging 5 wt% NaCl eq. The ore-forming mechanisms include fluid immiscibility during stage I, and mixing with meteoric water during stage II. Oxygen, hydrogen, and carbon isotopes suggest that the ore-forming fluids originated as mixtures of metamorphic water and magmatic water, whereas the sulfur isotope suggests an igneous origin. The features of geology and ore-forming fluid at the Koka deposit are similar to those of orogenic gold deposits, suggesting that the Koka deposit might be an orogenic gold deposit related to granite.


2013 ◽  
Vol 734-737 ◽  
pp. 215-218
Author(s):  
Guo Rui Zhang ◽  
Jiu Hua Xu ◽  
Li Hua Shan ◽  
Hui Zhang ◽  
Xiao Feng Wei

The Saidu gold deposit is located in the northwest part of Ertix Tectonic Zone in Xinjiang. The ore bodies occur in altered mylonite zones within the Mar-kakol giant fault zone and are controlled by the ductile shear zone. The structural-metallogenic fluids of the early stage are characterized by mesothermal-hydrothermal CO2-N2-rich fluids, with homogenization temperatures of fluid inclusions being 252~408°C. The tectonic-metallogenic fluids at the middle stage are characterized by CO2-H2O fluids, with homogenization temperatures being 203~326°C. The fluids at the late stage were epithermal-mesothermal low salinity aqueous solutions, with homogenization temperatures being 120~221°C. The main gold mineralization was related to the post-orogenic extension environment, with the evolution characteristics corresponding to the evolution of shear zones.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 344
Author(s):  
Zhankun Liu ◽  
Xiancheng Mao ◽  
Andrew Jedemann ◽  
Richard C. Bayless ◽  
Hao Deng ◽  
...  

Gold deposits in the Jiaodong Peninsula represent a primary gold resource in China and mostly exhibit similar ore-forming features related to sericite-quartz-pyrite alteration and other controls from (micro-)structural deformation. This study investigates the pyrite textures and trace elements in the Sizhuang gold deposit (>100 t Au) to document the key factors impacting on the genesis of the Jiaodong-type orogenic deposits. Three main types of pyrite are identified: (1) the first generation of pyrite (Py1) occurs as disseminated euhedral to subhedral grains in K-feldspar-albite-rutile-hematite and sericite alteration (stage 1), (2) Py2 as aggregates in quartz-sericite-pyrite altered rocks or quartz-pyrite veins (stage 2) can be subdivided into Py2a as irregular cores, Py2b as a zoned overgrowth on Py2a, and Py2c as overgrowth on early pyrite, and (3) Py3 as fine-grained crystals in siderite-polymetallic veins (stage 3). Primary gold at the Sizhuang deposit is coevally or slightly later deposited with Py2b, Py2c, and Py3. Laser ablation–inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses show that the highest Co and Ni contents in Py1 and high but variable Co in Py2b favors the involvement of deep high-temperature magmatic waters at stage 1 and middle stage 2. The elevated As contents from Py2a to Py2c and depletion of trace elements (e.g., Co, Ni, As and Te) and high Au/Co, Cu/Ni, and As/Ni values in Py2a and Py3, combined with published H-O isotope data, imply a meteoric water ingress during stage 2–3. Thus, the fluid evolution at Sizhuang is a consequence of pulsed deep magmatic fluid release plus progressive meteoric fluid ingress. The rhythmic Co–As–Ni–Au bands of Py2b additionally suggest episodic changes in the composition of ore-forming fluids. Moreover, the sharp textural features (e.g., pyrite overgrowth on previously cataclastic crystals) of Py2 and As-Cu-rich and Co-poor bands in zoned Py2b probably also reflect rapid metal deposition and self-organization and subsequent mineral crystal growth due to the pressure release during phase separation in the Sizhuang deposit. Considering the significantly concentrated gold (>1300 t) in the regional Jiaojia fault zone and Au-bearing mineral formation related to phase separation (boiling) in the Sizhuang deposit, gold mineralization in the Sizhuang deposit was interpreted to be controlled by the pressure-driver owing to the seismic activities in the Jiaojia fault system.


Author(s):  
Arifudin Idrus

Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas contained by the rocks were analyzed petrographically and chemically. Mineral chemistry was detected by electron microprobe analyzer, whilst biotite is petrographically classified as either magmatic or hydrothermal types. Sericite replacing plagioclase occurred as fine-grained mineral and predominantly associated with argillic-related alteration types. Biotites in the Batu Hijau deposit are classified as phlogopite with a relatively low mole fraction magnesium (XMg) (~0.75) compared to the “typical” copper porphyry deposit (~0.82). The relationship between the XMg and halogen contents are generally consistent with “Fe-F and Mg-Cl avoidance rules”.  F content in biotite and sericite decrease systematically from inner part of the deposit which is represented by early biotite (potassic) zone where the main copper-gold hosted, to the outer part of the deposit. However, chlorine in both biotite and sericite from each of the alteration zones shows a relative similar concentration, which suggests that it is not suitable to be used in identification of the alteration zones associated with strong copper-gold mineralization. H2O content of the biotite and sericite also exhibits a systematic increase outward which may also provide a possible geochemical vector to ore for the copper porphyry deposits. This is well correlated with fluorine content of biotite in rocks and bulk concentration of copper from the corresponding rocks.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Peng Chai ◽  
Zeng-qian Hou ◽  
Hong-rui Zhang ◽  
Lei-lei Dong

The Xiejiagou deposit is a representative medium-sized gold deposit in Jiaodong the Peninsula, which contains gold reserves of 37.5 t. The orebodies are hosted in the Linglong biotite granite with a zircon LA-ICP-MS U–Pb age of 160.5±1.3 Ma (N=15, MSWD=1.2) and are characterized by disseminated- or stockwork-style ores. Mineralization and alteration are structurally controlled by the NE-striking fault. Three stages of mineralization were identified with the early stage being represented by (K-feldspar) sericite quartz pyrite, the middle stage by quartz gold polymetallic sulfide, and the late stage by quartz carbonate. Ore minerals and gold mainly occurred in the middle stage. Three types of primary fluid inclusions were distinguished in the Xiejiagou deposit, including carbonic-aqueous, pure carbonic, and aqueous inclusions. The primary fluid inclusions of the three stages were mainly homogenized at temperatures of 262–386°C, 192–347°C, and 137–231°C, with salinities of 2.22–8.82, 1.02–11.60, and 1.22–7.72 wt% NaCl equivalent, respectively. These data indicate that the initial ore-forming fluids were a medium temperature, CO2-rich, and low-salinity H2O–CO2–NaCl homogeneous system, and the ore-forming system evolved from a CO2-rich mesothermal fluid into a CO2-poor fluid. Considering the fluid inclusion characteristics, H–O–S–Pb isotopes, and regional geological events, the ore-forming fluid reservoir was likely metamorphic in origin. Trapping pressures of the first two hydrothermal stages estimated from the carbonic aqueous inclusion assemblages were ~224–302 MPa and ~191–258 MPa, respectively. This suggests that the gold mineralization of the Xiejiagou gold deposit occurred at a lithostatic depth of ~7.2–9.7 km. Au(HS)2− was the most probable gold-transporting complex at the Xiejiagou deposit. Precipitation of gold was caused by a CO2 effervescence of initial auriferous fluids.


Sign in / Sign up

Export Citation Format

Share Document