Energy consumption of residential buildings and occupancy profiles. A case study in Mediterranean climatic conditions

2017 ◽  
Vol 11 (1) ◽  
pp. 121-145 ◽  
Author(s):  
Dafni Mora ◽  
Cristina Carpino ◽  
Marilena De Simone
Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


2018 ◽  
Vol 7 (3) ◽  
pp. 1861
Author(s):  
Neveen Y. Azmy ◽  
Rania E. Ashmawy

Windows play a significant role as they largely influence the energy load. Although there are many studies on the energy-efficient windows design, there is still a lack in information about the mutual impact of windows’ size, position and orientation on the energy loads. In this paper, the effect of different window positions and orientations on the energy consumption in a typical room in an administrative building that is located in the hot climatic conditions of Cairo city, Egypt is considered. This case study has been modeled and analyzed to achieve good environmental performance for architectural space, as well as assessing its impact on the amount of natural lighting required by using the Energy Plus program. The study concludes that the WWR (Window Wall Ratio) 20% square north-oriented upper  opening consumes 25% lower energy than the rectangular 3:1 opening in the lower west-oriented façade. The upper openings are the highest in terms of light intensity, as they cover about 50% of the room area. The WWR 30% rectangular north-oriented upper 3:1 opening consumes 29% lower energy than the rectangular lower 3:1opening in the façade. Regarding light intensity, the upper openings are the best for natural lighting as the light covers more than 60% of the room area.                                                                                                                                                               


2021 ◽  
Author(s):  
Philip McKeen ◽  
Alan S. Fung

This paper examines the energy consumption of varying aspect ratio in multi-unit residential buildings in Canadian cities. The aspect ratio of a building is one of the most important determinants of energy efficiency. It defines the building surface area by which heat is transferred between the interior and exterior environment. It also defines the amount of building area that is subject to solar gain. The extent to which this can be beneficial or detrimental depends on the aspect ratio and climate. This paper evaluates the relationship between the geometry of buildings and location to identify a design vernacular for energy-efficient designs across Canada.


2020 ◽  
Vol 13 (1) ◽  
pp. 179
Author(s):  
Mohammad B. Hamida ◽  
Wahhaj Ahmed ◽  
Muhammad Asif ◽  
Faris Abdullah Almaziad

The buildings and construction sector accounts for the majority of the energy consumption in the Kingdom of Saudi Arabia (KSA). For a sustainable future, energy consumption in the sector should be reduced and existing buildings need to be energy retrofitted. A number of studies present energy retrofitting of residential buildings in KSA; however, there is a lack of studies presenting retrofitting of educational buildings. Thus, the aim of this study is to adopt a BIM-based approach to assess Energy Conservation Measures (ECMs) in a prototypical Government-built educational building in Dammam, KSA. The methodology consists of six prime steps, (1) case study data collection, (2) energy auditing, (3) proposing ECMs, (4) BIM model development, (5) energy assessment, and (6) economic assessment. The energy audit revealed several inefficiencies in the building construction and operation and four ECMs were proposed and simulated. It was found that annual energy consumption can be reduced by 22.7% in the educational building, and the investment for the four ECMs is paid back in 2.7 years only. Therefore, implementing the proposed ECMs is a viable option to energy retrofit such educational buildings in the country, and the presented BIM-based approach can be adopted to efficiently conduct the energy retrofitting process.


Sign in / Sign up

Export Citation Format

Share Document