scholarly journals Spatial Analysis of Exposure to Traffic-Related Air Pollution in Mexico: Implications for Urban Planning to Improve Public Health

Author(s):  
Ruben Garnica-Monroy ◽  
Veronica Garibay-Bravo ◽  
Alonso Gonzalez-Gonzalez ◽  
Hilda Martínez Salgado ◽  
Malinalli Hernández-Reyes

AbstractIn cities, traffic is one of the major determinants for air quality. Studies have shown that proximity to roadways with heavy traffic has been linked with increased incidence and prevalence of a range of health effects such as adverse birth outcomes, dementia, asthma, and increased risk of bronchitis, wheezing, deficits in lung function growth and airway inflammation, especially among children. In Mexico, 103 urban areas have air quality monitoring, whilst more than 2,000 cities lack any information and only 29 have monitoring systems that are robust enough to estimate exposure. This poses serious limitations for environmental and health authorities when aiming at assessing current exposure levels to Traffic-Related Air Pollution (TRAP) with the purpose of designing and implementing policies to reduce the impacts of poor air quality in the population. This study proposes an approach to estimate the population potentially exposed to TRAP using Space Syntax’s accessibility index as the urban form variable. We selected the ten most accessible roads of the five Mexican cities to estimate the proportion of vulnerable population (residents, employees, schoolchildren, hospital patients) with the highest potential exposure to TRAP at a distance of 500 m. Our findings show a similar proportion of the population continually exposed to TRAP due to the proximity to roads with heavy traffic than studies using more complex models. Finally, this study presents alternatives to reduce current population exposure to traffic emissions in Mexican cities.

2018 ◽  
Vol 18 (11) ◽  
pp. 8017-8039 ◽  
Author(s):  
Chandra Venkataraman ◽  
Michael Brauer ◽  
Kushal Tibrewal ◽  
Pankaj Sadavarte ◽  
Qiao Ma ◽  
...  

Abstract. India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m−3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 504
Author(s):  
Man Yuan ◽  
Mingrui Yan ◽  
Zhuoran Shan

In previous studies, planners have debated extensively whether compact development can improve air quality in urban areas. Most of them estimated pollution exposure with stationary census data that linked exposures solely to residential locations, therefore overlooking residents’ space–time inhalation of air pollutants. In this study, we conducted an air pollution exposure assessment by scrutinizing one-hour resolution population distribution maps derived from hourly smartphone data and air pollutant concentrations derived from inverse distance weighted interpolation. We selected Wuhan as the study area and used Pearson correlation analysis to explore the effect of compactness on population-weighted concentrations. The results showed that even if a compact urban form helps to reduce pollution concentrations by decreasing vehicle traveling miles and tailpipe emissions, higher levels of building density and floor area ratios may increase population-weighted exposure. With regard to downtown areas with high population density, compact development may locate more people in areas with excessive air pollution. In all, reducing density in urban public centers and developing a polycentric urban structure may aid in the improvement of air quality in cities with compact urban forms.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 23 ◽  
Author(s):  
Celia Milford ◽  
Emilio Cuevas ◽  
Carlos L. Marrero ◽  
J.J. Bustos ◽  
Víctor Gallo ◽  
...  

Air pollution has many adverse effects on health and is associated with an increased risk of mortality. Desert dust outbreaks contribute directly to air pollution by increasing particulate matter concentrations. We investigated the influence of desert dust outbreaks on air quality in Santa Cruz de Tenerife, a city located in the dust export pathway off the west coast of North Africa, using air-quality observations from a six-year period (2012–2017). During winter intense dust outbreaks PM 10 mean (24-h) concentrations increased from 14 μ g m − 3 to 98 μ g m − 3 , on average, and PM 2 . 5 mean (24-h) concentrations increased from 6 μ g m − 3 to 32 μ g m − 3 . Increases were less during summer outbreaks, with a tripling of PM 10 and PM 2 . 5 daily mean concentrations. We found that desert dust outbreaks reduced the height of the marine boundary layer in our study area by >45%, on average, in summer and by ∼25%, on average, in winter. This thinning of the marine boundary layer was associated with an increase of local anthropogenic pollution during dust outbreaks. NO 2 and NO mean concentrations more than doubled and even larger relative increases in black carbon were observed during the more intense summer dust outbreaks; increases also occurred during the winter outbreaks but were less than in summer. This has public health implications; local anthropogenic emissions need to be reduced even further in areas that are impacted by desert dust outbreaks to reduce adverse health effects.


2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 236
Author(s):  
Ha Na You ◽  
Myeong Ja Kwak ◽  
Sun Mi Je ◽  
Jong Kyu Lee ◽  
Yea Ji Lim ◽  
...  

Environmental pollution is an important issue in metropolitan areas, and roadside trees are directly affected by various sources of pollution to which they exhibit numerous responses. The aim of the present study was to identify morpho-physio-biochemical attributes of maidenhair tree (Ginkgo biloba L.) and American sycamore (Platanus occidentalis L.) growing under two different air quality conditions (roadside with high air pollution, RH and roadside with low air pollution, RL) and to assess the possibility of using their physiological and biochemical parameters as biomonitoring tools in urban areas. The results showed that the photosynthetic rate, photosynthetic nitrogen-use efficiencies, and photochromic contents were generally low in RH in both G. biloba and P. occidentalis. However, water-use efficiency and leaf temperature showed high values in RH trees. Among biochemical parameters, in G. biloba, the lipid peroxide content was higher in RH than in RL trees, but in P. occidentalis, this content was lower in RH than in RL trees. In both species, physiological activities were low in trees planted in areas with high levels of air pollution, whereas their biochemical and morphological variables showed different responses to air pollution. Thus, we concluded that it is possible to determine species-specific physiological variables affected by regional differences of air pollution in urban areas, and these findings may be helpful for monitoring air quality and environmental health using trees.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


Author(s):  
Yanchuan Mou ◽  
Yan Song ◽  
Qing Xu ◽  
Qingsong He ◽  
Ang Hu

Air pollution in China is a serious problem and an inevitable threat to human health. This study evaluated the relationship between air quality and urban growth pattern in China by conducting empirical research involving 338 prefecture-level and above cities. Spatial regression techniques considering spatial autocorrelation were applied to correct the calculation bias. To obtain local and accurate results, a conception of eight economic zones was adopted to delineate cities into different groups and to estimate regression separately. An additional six urban form and socioeconomic indicators served as controlling variables. Significant and positive relationships between the aggregated urban growth pattern index and air pollution were observed in Northeast China, northern coastal China, and Northwest China, indicating that a high degree of urban aggregation is associated with poor air quality. However, a negative parameter was obtained in southern coastal China, showing an opposite association on urban aggregation and air quality. Nonsignificant connections among the other four zones were found. The findings also highlighted that land use mix, population density, and city size exerted varied and significant influence on air quality across eight economic zones. Overall, this study indicated that understanding the quantitative relationships between urban forms and air quality can provide policymakers with alternative ways to improve air quality in rapidly developing China.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
J Gajic ◽  
D Dimovski ◽  
B Vukajlovic ◽  
M Jevtic

Abstract Issue/problem Increasing attention is being paid to air pollution as one of the greatest threats to public and urban health. The WHO’s Urban Health Initiative points out the importance of collecting data and mapping the present state of air quality in urban areas. For citizens, such engagement is enabled by the appearance of personal air quality measurement devices that use crowd-sourcing to make measurement results publicly accessible in real time. Description of the problem As a way of contributing to air pollution monitoring in their town, three PhD Public health students conducted over 40 measurements between the start of June and end of August 2018 on various locations in the city of Novi Sad, Serbia. Measurements were performed using AirBeam personal air quality monitoring devices and their results presented as μg/m3 of Particulate Matter 2.5 (PM2.5) and automatically uploaded to the internet using the Air-casting app. Results Measurements conducted in public transportation vehicles returned the rather high average value of 40 μg/m3, where coffee shops and restaurants scored an even higher value of 48,67 μg/m3. The lowest average air pollution levels were registered near the Danube river bank (5.67) and in the parks (6), while the sites near crossroads or in the street showed average air pollution of 8.33 μg/m3. Residential areas where smoking is present during the day reported 2.5 times higher PM2.5 values than those without smokers (33.8 and 12.78 μg/m3). Lessons Bearing in mind that the air quality is considered as a serious health risk in urban areas, results of this pilot investigation suggest potential health risk for citizens living in urban areas. The negative effects of combustion and smoking on air quality are strongly highlighted, as well as the positive impact of green areas and parks near residential areas. Key messages Air pollution exposure as a serious health risk in urban areas. Crowdsourcing as a way of air quality monitoring has great potential for contributing to public health.


Urban Science ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 68
Author(s):  
Daniel L. Mendoza

Multiple social and environmental justice concerns are linked to the urban form such as the distribution of socioeconomic class populations, healthcare spending, air pollution exposure, and human mobility. Because of this, the implications of the relationships between built urban form, sociodemographic factors, and air quality warrant analysis at a high spatial resolution. This study used 1m resolved LiDAR data to characterize land use in Salt Lake County, Utah, and associate it with sociodemographic and air quality data at the census block group and zip code levels. We found that increasing tree cover was associated with higher per capita income and lower minority populations while increasing built cover was linked to lower per capita income and higher minority populations. Air quality showed less strong correlations, however, decreased non-irrigated cover, increased built cover, and higher amounts of households living under poverty were related to higher long-term PM2.5 exposure. Due to regional air pollution concerns, several policy efforts have been undertaken to improve air quality and reduce negative health outcomes in Utah which are being informed by regulatory and research-grade air quality sensors.


Author(s):  
Martin Otto Paul Ramacher ◽  
Matthias Karl

To evaluate the effectiveness of alternative policies and measures to reduce air pollution effects on urban citizen’s health, population exposure assessments are needed. Due to road traffic emissions being a major source of emissions and exposure in European cities, it is necessary to account for differentiated transport environments in population dynamics for exposure studies. In this study, we applied a modelling system to evaluate population exposure in the urban area of Hamburg in 2016. The modeling system consists of an urban-scale chemistry transport model to account for ambient air pollutant concentrations and a dynamic time-microenvironment-activity (TMA) approach, which accounts for population dynamics in different environments as well as for infiltration of outdoor to indoor air pollution. We integrated different modes of transport in the TMA approach to improve population exposure assessments in transport environments. The newly developed approach reports 12% more total exposure to NO2 and 19% more to PM2.5 compared with exposure estimates based on residential addresses. During the time people spend in different transport environments, the in-car environment contributes with 40% and 33% to the annual sum of exposure to NO2 and PM2.5, in the walking environment with 26% and 30%, in the cycling environment with 15% and 17% and other environments (buses, subway, suburban, and regional trains) with less than 10% respectively. The relative contribution of road traffic emissions to population exposure is highest in the in-car environment (57% for NO2 and 15% for PM2.5). Results for population-weighted exposure revealed exposure to PM2.5 concentrations above the WHO AQG limit value in the cycling environment. Uncertainties for the exposure contributions arising from emissions and infiltration from outdoor to indoor pollutant concentrations range from −12% to +7% for NO2 and PM2.5. The developed “dynamic transport approach” is integrated in a computationally efficient exposure model, which is generally applicable in European urban areas. The presented methodology is promoted for use in urban mobility planning, e.g., to investigate on policy-driven changes in modal split and their combined effect on emissions, population activity and population exposure.


Sign in / Sign up

Export Citation Format

Share Document