scholarly journals Light Hydrocarbon Geochemistry: Insight into Mississippian Crude Oil Sources from the Anadarko Basin, Oklahoma, USA

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ibrahim Atwah ◽  
Stephen Sweet ◽  
John Pantano ◽  
Anthony Knap

The Mississippian limestone is a prolific hydrocarbon play in the northern region of Oklahoma and the southern part of Kansas. The Mississippian reservoirs feature variations in produced fluid chemistry usually explained by different possible source rocks. Such chemical variations are regularly obtained from bulk, molecular, and isotopic characteristics. In this study, we present a new geochemical investigation of gasoline range hydrocarbons, biomarkers, phenols, and diamondoids in crude oils produced from Mississippian carbonate and Woodford Shale formations. A set of oil samples was examined for composition using high-performance gas-chromatography and mass-spectrometry techniques. The result shows a distinct geochemical fingerprint reflected in biomarkers such as the abundance of extended tricyclic terpanes, together with heptane star diagrams, and diamantane isomeric distributions. Such compounds are indicative of the organic matter sources and stages of thermal maturity. Phenolic compounds varied dramatically based on geographic location, with some oil samples being depleted of phenols, while others are intact. Based on crude oil compositions, two possible source rocks were identified including the Woodford Shale and Mississippian mudrocks, with a variable degree of mixing reported. Variations in phenol concentrations reflect reservoir fluid dynamic and water interactions, in which oils with intact phenols are least affected by water-washing conversely and crude oils depleted in phenols attributed to reservoir water-washing. These geochemical parameters shed light into petroleum migration within Devonian-Mississippian petroleum systems and mitigate geological risk in exploring and developing petroleum reservoirs.

2020 ◽  
Vol 17 (3) ◽  
pp. 582-597 ◽  
Author(s):  
Ting Wang ◽  
Dong-Lin Zhang ◽  
Xiao-Yong Yang ◽  
Jing-Qian Xu ◽  
Coffey Matthew ◽  
...  

AbstractThe Woodford–Mississippian “Commingled Production” is a prolific unconventional hydrocarbon play in Oklahoma, USA. The tight reservoirs feature variations in produced fluid chemistry usually explained by different possible source rocks. Such chemical variations are regularly obtained from bulk, molecular, and isotopic characteristics. In this study, we present a new geochemical investigation of gasoline range hydrocarbons, biomarkers, and diamondoids in oils from Mississippian carbonate and Woodford Shale. A set of oil/condensate samples were examined using high-performance gas chromatography and mass spectrometry. The result of the condensates from the Anadarko Basin shows a distinct geochemical fingerprint reflected in light hydrocarbon characterized by heptane star diagrams, convinced by biomarker characteristics and diamantane isomeric distributions. Two possible source rocks were identified, the Woodford Shale and Mississippian mudrocks, with a variable degree of mixing. Thermal maturity based on light hydrocarbon parameters indicates that condensates from the Anadarko Basin are of the highest maturity, followed by “Old” Woodford-sourced oils and central Oklahoma tight oils. These geochemical parameters shed light on petroleum migration within Devonian–Mississippian petroleum systems and mitigate geological risk in exploring and developing petroleum reservoirs.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-9
Author(s):  
Onyema MO

Two Niger Delta crude oils from Rivers and Delta States (samples A and F) and their compositional mixtures (samples B, C, D and E) where evaluated using a range of geochemical parameters derived from aromatic hydrocarbons and aromatic sulphur compounds to determine their source and maturity. The relative distribution of various plant markers in crude oil samples A and F which were retained in their compositional mixes suggests the contribution of angiosperm higher plants and coniferous higher plants to the source rocks that generated the crude oils. The various maturity parameters computed for the oil samples revealed that both the Rivers and Delta crude oils lie in the high maturity state with sample F significantly more matured than sample A. All alkynaphthalene maturity parameters suggested a peak to late oil generation window for the crude oil samples except the methyl naphthalene ratio (MNR) whose maturity sequence lacks sufficient variation to distinguish maturity differences in the crude oil samples. The maturity characters of TNR-1 and TNR-2 (trimethylnaphthalene ratio) showed a strong correlation between the individual crude oil samples and their mixtures. However, all the other maturity parameters showed moderate or weak correlation between the individual crude oil samples and their mixtures.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


2020 ◽  
Vol 38 (6) ◽  
pp. 2695-2710
Author(s):  
Yao-Ping Wang ◽  
Xin Zhan ◽  
Tao Luo ◽  
Yuan Gao ◽  
Jia Xia ◽  
...  

The oil–oil and oil–source rock correlations, also termed as geochemical correlations, play an essential role in the construction of petroleum systems, guidance of petroleum exploration, and definition of reservoir compartments. In this study, the problems arising from oil–oil and oil–source rock correlations were investigated using chemometric methods on oil and source rock samples from the WZ12 oil field in the Weixinan sag in the Beibuwan Basin. Crude oil from the WZ12 oil field can be classified into two genetic families: group A and B, using multidimensional scaling and principal component analysis. Similarly, source rocks of the Liushagang Formation, including its first, second, and third members, can be classified into group I and II, corresponding to group B and A crude oils, respectively. The principle geochemical parameters in the geochemical correlation for the characterisation and classification of crude oils and source rocks were 4MSI, C27Dia/C27S, and C24 Tet/C26 TT. This study provides insights into the selection of appropriate geochemical parameters for oil–oil and oil–source rock correlations, which can also be applied to other sedimentary basins.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Aboglila S

This search aims to apply developed geochemical methods to a number of oils and source rock extracts to better establish the features of ancient environments that occurred in the Murzuq basin. Geochemical and geophysical approaches were used to confirm further a source contribution from other Paleozoic formations to hydrocarbon accumulations in the basin. One hundred and forty rock units were collected from B1-NC151, D1-NC174, A1-NC 76, D1-NC 151, F1-NC58, A1-NC 186, P1-NC 101, D1-NC 58, H1-NC58 and A1-NC58 wells. Seven crude oils were collocated A1-NC186, B1-NC186, E2-NC101, F3-NC174, A10-NC115, B10-NC115 and H10-NC115 wells. A geochemical assessment of the studied rocks and oils was done by means of geochemical parameters of total organic carbon (TOC), Rock-Eval analysis, detailed-various biomarkers and stable carbon isotope. The TOC values from B1-NC151 range 0.40% to 8.5%, A1-NC186 0.3% and 1.45, A1-NC76 0.39% to 0.74%, D1-NC151 0.40% to 2.00% to F1-NC58 0.40% to 1.12%. D1_NC174 0.30% to 10 %, P1-NC101 0.80% to 1.35%, D1-NC58 0.5% to 1.10%, H1-NC58 0.20% to 3.50%, A1-NC58 0.40% to 1.60%. The categories of organic matter from rock-eval pyrolysis statistics point to that type II kerogen is the main type, in association with type III, and no of type I kerogen recognized. Vitrinite reflectance (%Ro), Tmax and Spore colour index (SCI) as thermal maturity parameters reflect that the measured rock units are have different maturation levels, ranging from immature to mature sources. acritarchs distribution for most samples could be recognized and Palynomorphs are uncommon. Pristane to phytane ratios (> 1) revealed marine shale to lacustrine of environmental deposition. The Stable carbon isotope ( δ 13 C) values of seven rock-extract samples are -30.98‰ and -29.14‰ of saturates and -29.86‰ to -28.37‰ aromatic fractions. The oil saturate hydrocarbon fractions range between -29.36‰ to -28.67‰ and aromatic are among -29.98 ‰ to -29.55 ‰. The δ 13 C data in both rock extractions and crude oils are closer to each other, typical in sign of Paleozoic age. It is clear that the base of Tanezzuft Formation (Hot shale) is considered the main source rocks. The Devonian Awaynat Wanin Formation as well locally holds sufficient oil prone kerogen to consider as potential source rocks. Ordovician Mamuniyat Formation shales may poorly contain oil prone kerogen to be addressed in future studies. An assessment of the correlations between the oils and potential source rocks and between the oils themselves indicated that most of the rocks extracts were broadly similar to most of the oils and supported by carbon stable isotope analysis results.


2001 ◽  
Vol 66 (5) ◽  
pp. 297-308 ◽  
Author(s):  
B. Jovancicevic ◽  
H. Wehner ◽  
G. Scheeder ◽  
D. Plecas ◽  
M. Ercegovac ◽  
...  

The results of an investigation of crude oils originating from the Sirakovo and Bradarac-Maljurevac localities (southern part of the Pannonian Basin) are reported in this paper. The aim was to estimate the organic geochemical similarity of the crude oils from the Drmno (Kostolac) depression oil fields. The nine selected samples originated from reservoir rocks of various depths. Reliable source and organic geochemical maturation parameters served as the basis for the correlation studies. The similar origin of the investigated Drmno depression crude oils was corroborated, characterized by a significant participation of terrestrial precursor biomass. They were shown to be of relatively low maturity and to have been formed during the earlier stages of the diagenetic-catagenetic sequence of processes leading to the formation of crude oils, most probably in source rocks ofTertiary age, corresponding to vitrinite reflectances between Ro = 0.70 % and Ro = 0.80 %. The crude oils from Bradarac-Maljurevac seemed to be somewhat less homogeneous with respect to organic geochemical parameters compared to Sirakovo crude oils.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ming Wang ◽  
Shiju Liu ◽  
Ji Li ◽  
Gang Gao ◽  
Julei Mi ◽  
...  

The shale oil of the Lucaogou Formation in the Jimusaer Sag of the Junggar Basin was divided into two sweet spots for exploration and development. Crude oil in the upper and lower sweet spots comes from the upper and lower source rocks. After years of exploration, it has been found that the crude oil in the lower sweet spot has worse physical properties than that of the upper sweet spot. In this study, through the physical and geochemical analysis of crude oil in the upper and lower sweet spots, combined with the organic petrological observation of the upper and lower source rocks, the cause of the poor physical properties of the crude oil in the lower sweet spot has been identified. n-Alkanes in the saturated hydrocarbons of crude oil in the upper and lower sweet were complete while odd-to-even predominance was evident, indicating that the poor physical properties of the crude oil are unrelated to biodegradation. In addition, the correlation between the biogenic parameters and the physical properties of crude oil was analyzed, finding that the difference in crude oil is mainly related to the composition of biogenic precursors of upper and lower source rocks. Combined with organic petrological observation, the lower source rock was found to be rich in telalginite (green algae), which is therefore the primary reason for the difference in physical properties. In comparing results from the characteristics of crude oil biomarkers from both the upper and lower sweet spots, crude oils in the upper sweet spot are similar to each other, indicating that the enrichment of crude oil has experienced a certain migration. In contrast, the differences in biomarkers between the crude oils of the lower sweet spot were relatively large and changed regularly with depth, suggesting the self-generated and self-stored characteristics of crude oil enrichment. At the same time, it was found that the crude oil in the lower sweet spot is also affected by the maturity of adjacent source rocks under the condition of a consistent parent material source. Overall, it was determined that the lower the maturity of source rocks, the poorer the physical property of the crude oil produced.


2002 ◽  
Vol 67 (8-9) ◽  
pp. 553-566 ◽  
Author(s):  
Branimir Jovancicevic ◽  
H. Wehner ◽  
G. Scheeder ◽  
K. Stojanovic ◽  
Aleksandar Sainovic ◽  
...  

In a search for source rocks of the crude oils of the Drmno depression (southern part of the Pannonian Basin, Serbia), based on bulk and specific organic geochemical parameters, six out of eight Sirakovo, Bubu{inac and Bradarac sedimentary core samples were found to possess typical source rock characteristics. By comparing the results observed for these sedimentary samples with the corresponding properties of the crude oils from the Sirakovo and Bradarac oil-gas fields, a positive organic geochemical oil-source rock correlation was experienced for the first time within this basin. This finding may be considered as an important step towards the ultimate organic geochemical/geological interpretation of the Drmno depression.


2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 75
Author(s):  
Ivelina K. Shishkova ◽  
Dicho S. Stratiev ◽  
Mariana P. Tavlieva ◽  
Rosen K. Dinkov ◽  
Dobromir Yordanov ◽  
...  

Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility indices have been employed to evaluate the compatibility of crude blends from the thirty individual crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The ratio of solubility blending number to insolubility number was found to best describe the desalting efficiency, and therefore could be considered as the compatible index that best models the crude oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to model, and predict the compatibility of crude blends.


Sign in / Sign up

Export Citation Format

Share Document