scholarly journals Paleoenvironment and organic matter enrichment of the Carboniferous volcanic-related source rocks in the Malang Sag, Santanghu Basin, NW China

2020 ◽  
Author(s):  
Tian-Jun Li ◽  
Zhi-Long Huang ◽  
Xuan Chen ◽  
Xin-Ning Li ◽  
Jun-Tian Liu

AbstractVolcanic activity was quite frequent during the deposition of the Late Carboniferous Ha’erjiawu Formation in the Santanghu Basin. The petrology and organic and inorganic geochemical indicators were used to investigate hydrocarbon potential, paleoenvironmental conditions and organic matter enrichment of the mudstones. The results show that the oil generation capacity of the Ha’erjiawu Formation mudstones, which has abundant oil-prone organic matter (Type II kerogen with hydrogen index values mainly ranging from 250 to 550 mg HC/g TOC) in mature stage (Tmax values mainly ranging from 435 to 450 °C), is considerable. The Ha’erjiawu Formation was deposited in a dysoxic, freshwater-mildly brackish, and warm-humid environment. During its deposition, the Ha’erjiawu Formation received hydrothermal inputs. The volcanic hydrothermal activities played an important role in the organic matter enrichment. In addition, the total organic carbon (TOC) is significantly positively correlated with the felsic mineral content, but it is negatively correlated with the carbonate mineral content and C27/C29 ratios, indicating that terrigenous organic matter input also contributed to the primary productivity in the surface water. Therefore, the formation of the high-quality source rocks in the Ha’erjiawu Formation was jointly affected by the hydrothermal activity and the terrigenous organic matter input.

2005 ◽  
Vol 7 ◽  
pp. 9-12 ◽  
Author(s):  
Henrik I. Petersen

Although it was for many years believed that coals could not act as source rocks for commercial oil accumulations, it is today generally accepted that coals can indeed generate and expel commercial quantities of oil. While hydrocarbon generation from coals is less well understood than for marine and lacustrine source rocks, liquid hydrocarbon generation from coals and coaly source rocks is now known from many parts of the world, especially in the Australasian region (MacGregor 1994; Todd et al. 1997). Most of the known large oil accumulations derived from coaly source rocks have been generated from Cenozoic coals, such as in the Gippsland Basin (Australia), the Taranaki Basin (New Zealand), and the Kutei Basin (Indonesia). Permian and Jurassic coal-sourced oils are known from, respectively, the Cooper Basin (Australia) and the Danish North Sea, but in general only minor quantities of oil appear to be related to coals of Permian and Jurassic age. In contrast, Carboniferous coals are only associated with gas, as demonstrated for example by the large gas deposits in the southern North Sea and The Netherlands. Overall, the oil generation capacity of coals seems to increase from the Carboniferous to the Cenozoic. This suggests a relationship to the evolution of more complex higher land plants through time, such that the highly diversified Cenozoic plant communities in particular have the potential to produce oil-prone coals. In addition to this overall vegetational factor, the depositional conditions of the precursor mires influenced the generation potential. The various aspects of oil generation from coals have been the focus of research at the Geological Survey of Denmark and Greenland (GEUS) for several years, and recently a worldwide database consisting of more than 500 coals has been the subject of a detailed study that aims to describe the oil window and the generation potential of coals as a function of coal composition and age.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 439 ◽  
Author(s):  
Delu Li ◽  
Rongxi Li ◽  
Di Zhao ◽  
Feng Xu

Measurements of total organic carbon, Rock-Eval pyrolysis, X-ray diffraction, scanning electron microscope, maceral examination, gas chromatography, and gas chromatography-mass spectrometry were conducted on the organic-rich shale of Lower Paleozoic Niutitang Formation and Longmaxi Formation in Dabashan foreland belt to discuss the organic matter characteristic, organic matter origin, redox condition, and salinity. The results indicate that the Niutiang Formation and Longmaxi Formation organic-rich shale are good and very good source rocks with Type I kerogen. Both of the shales have reached mature stage for generating gas. Biomarker analyses indicate that the organic matter origin of Niutitang Formation and Longmaxi Formation organic-rich shale are all derived from the lower bacteria and algae, and the organic matter are all suffered different biodegradation degrees. During Niutitang Formation and Longmaxi Formation period, the redox conditions are both anoxic with no stratification and the sedimentary water is normal marine water.


2021 ◽  
Author(s):  
◽  
Enock Rotich

<p>The Re-Os radiogenic isotope system has over the past three decades been successfully applied to organic-rich sedimentary rocks and oils as a geochronometer and geochemical tracer. The Re-Os geochronometer has provided a direct way of constraining the depositional age of organic-rich sediments as well as the timing of oil generation events. Osmium isotopic compositions have further been utilised in understanding past climatic, oceanographic and geological events recorded in sediments, and in correlating oils to their source. Thus far, however, Re-Os studies of organic-rich sediments have mainly focused on marine black shales where Re and Os are primarily sourced from seawater. The work presented in this thesis seeks to investigate factors controlling Re-Os systematics and potential for geochronology in a range of fluvio-deltaic coaly rocks and terrestrial organic matter-dominated marine sediments, and associated oils from New Zealand’s Taranaki and East Coast basins. The Re-Os data presented here yield the first radiometric age for the late Paleocene Waipawa Formation (57.5 ± 3.5 Ma), a marine sedimentary unit that was formed by episodic input of large amounts of terrestrial woody plant matter resulting in high average sedimentation rates of up to ~10.6 cm/ky. This age is consistent with available biostratigraphic age determinations. The formation possesses Re (38.9 ± 17.6 ppb) and Os (526 ± 75.8 ppt) concentrations similar to those found in typical marine sediments containing amorphous organic matter deposited under much lower sedimentation rates. This indicates that organic matter type and sedimentation rate may not play a significant role in sequestration of these elements in organic-rich sediments. Unlike the Waipawa Formation, coals and coaly mudstones with varying degrees of marine influence (purely terrestrial to strongly marine-influenced) from the Rakopi, North Cape, Farewell and Mangahewa formations record low average Re (0.37 ± 0.25 ppb) and Os (24.5 ± 11.9 ppt) concentrations. These concentrations are up to two orders of magnitude lower than those of similarly marine-influenced coals from the Matewan coalbed, USA, suggesting that Re and Os enrichment in coals does not simply correlate with the level of marine influence; the timing and nature of the marine influence, as well as chelation ability of organic-rich sediments, are equally important. The initial 187Os/188Os (Osi) values for the Waipawa (~0.28) and underlying Whangai (~0.36) formations are broadly similar to those reported for coeval pelagic sediments from the central Pacific Ocean, further constraining the low-resolution marine 187Os/188Os record of the Paleocene. A broad correlation between this record and global temperature (δ18O and TEX86) and carbon isotope (δ13C) records is observed from the middle Paleocene to early Eocene, which is inferred to reflect climate-modulated changes in continental weathering patterns. Unlike the marine sediments, significant variations are noted in the Osi of the Taranaki Basin coaly rocks. These are linked to depositional and diagenetic conditions, degree of water connectivity with the open ocean, and sediment source. The large variations in Osi values combined with small ranges in 187Re/188Os ratios and relatively young ages are considered as factors that hindered development of Re-Os isochrons in these rocks. Crude oils sourced from the Taranaki coals and coaly mudstones also record low average Re (0.31 ± 0.09 ppb) and Os (14 ± 7.6 ppt) concentrations and have 187Re/188Os and 187Os/188Os ratios that do not correlate on an isochron diagram. The lack of an isochron fit for these oils is mainly attributed to a large variation in Osi values (0.47-1.14) resulting from the heterogeneous nature of their potential Rakopi and North Cape coaly source rocks and a lengthy (20 Myr) oil generation event. These Osi values, however, overlap with 187Os/188Os values for the potential source rocks at the time (ca.10 Ma) of oil generation (0.38-1.26), suggesting that Os isotopes may be utilised in tracing these oils. Crude oils that have potentially been sourced from the Waipawa and Whangai formations record much higher Re (2.86 ± 1.92 ppb) and Os (166 ± 142 ppt) concentrations than the coaly-sourced oils, and show Os isotopic compositions that either correlate with those of their potential source rocks (e.g., oil Osi = ~0.63 compared with Waipawa Formation 187Os/188Os = 0.48–0.68 at time of oil generation) or differ due to likely secondary alteration processes within the reservoir such as thermochemical sulfate reduction (TSR).</p>


1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


Author(s):  
T. B. Mikerina ◽  
N. P. Fadeeva

Use of infrared spectrometry method for examination of bituminous components of dispersed organic matter in Mesozoic and Cenozoic deposits of the Azov-Kuban petroleum basin gave very important information about conditions of formation of source rocks containing organic matter and the degree of its diagenetic or catagenetic transformation level. Character of infrared spectrums represented by 15 genetic types of chloroform bitumen allows to subdivide the zones with the source beds absence, zones of oil generation and zones where this processes have come to the end.


2013 ◽  
Vol 848 ◽  
pp. 55-59
Author(s):  
Hai Tao Xue ◽  
Qi Wang ◽  
Hai Yang Yan ◽  
Hong Yang Zhang

Gulong depression is one of the inheritance deposition and subsidence center, also is the most developed secondary structural belt in Songliao Basin. In this research area, the total organic carbon TOC content of the shale in Qingshankou Formation is mainly more than 1%. The organic matter of the shale in Qingshankou Formation has better types, typeIis major and followed by typeII. The maturity of the source rock in Qingshankou Formation of Gulong area is greater than 0.7%, and up to 1.8%, mainly in the mature-high mature stage. Since the shale of Qingshankou Formation has the features of great thickness, higher organic matter abundance, better type and mature-high mature stage, also it is located in the junction between lake facies and delta front facies with better brittle mineral content, so its the key area of the exploration of shale oil. In this text, find the areas which is S1 is more than 2 mg/g and the brittle mineral (quartz and feldspar) content is more than 50% in Gulong depression, and this areas are consistent with the distribution of industrial oil wells and low yield industrial oil wells in research area. This text provides a fast and effective method for the exploration and development of oil shale.


Georesursy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 12-20 ◽  
Author(s):  
Ivan S. Kotik ◽  
Tatyana V. Maidl ◽  
Olga S. Kotik ◽  
Natalia V. Pronina

Silurian source rocks are among the least studied in the Timan-Pechora basin. This is mainly due to their occurrence at great depths (3.0–4.5 km) and the limited penetration of this stratigraphic interval by wells. Another source of information is the outcrops of the Silurian, which are known in the eastern and northeastern parts of the Timan-Pechora basin. The studied section of the Silurian deposits is exposed on the Padimeityvis River, located on the Chernov swell in the northeastern part of the basin. This article is devoted to the study of Silurian source rocks based on the results of lithological, coal petrographic studies and geochemistry of organic matter. The studied section is composed of carbonate and clay-carbonate deposits formed in shallow-water shelf conditions. Most of the section, composed of microcrystalline and microcrystalline with bioclasts limestones, is characterized by low concentrations of organic matter (Corg is generally less than 0.3 %). Elevated Corg contents (up to 1.16 %) are characteristic of clay-carbonate rock varieties, which make up about 20 % of the section. Sediments with increased concentrations of organic matter were formed in isolated and deepened areas of the bottom of the shallow-water basin as a whole. Assessment of the catagenetic transformation based on Rock-Eval pyrolysis data, coal petrographic studies, and conodont color indices showed that organic matter reached the conditions of the middle-end of the main oil generation zone (gradation MC2‑MC3). The obtained geochemical characteristics (Corg, S2, HI), taking into account a certain level of organic matter maturity, indicate that the Silurian source rocks had an average hydrocarbon potential.


Sign in / Sign up

Export Citation Format

Share Document