New design of a hot mixing chamber for lowering its surface temperature by adopting a perforated inner cylinder

2021 ◽  
Vol 35 (12) ◽  
pp. 5723-5731
Author(s):  
Tu Thien Ngo ◽  
Tianjun Zhou ◽  
Hap Van Nguyen ◽  
Phu Minh Nguyen ◽  
Geun Sik Lee
Author(s):  
S. P. Eron’ko ◽  
M. Yu. Tkachev ◽  
E. V. Oshovskaya ◽  
B. I. Starodubtsev ◽  
S. V. Mechik

Effective application of slag-forming mixtures (SFM), being fed into continuous castingg machine (CCM) moulds, depends on their even distribution on the melt surface. Manual feeding of the SFM which is widely usedd does not provide this condition, resulting in the necessity to actualize the work to elaborate systems of SFM mechanized feedingg into moulds of various types CCM. A concept of the designing of a system of SFM feeding into CCM moulds presented with the ratte strictly correspondent to the casting speed and providing formation of an even layer of fine material of given thickness on the whoole surface of liquid steel. The proposed methods of designing of the SFM mechanized feeding systems based on three-dimensional computer simulation with the subsequent verification of the correctness of the adopted technical solutions on field samples. Informattion is presented on the design features of the adjusted facilities intended for continuous supply of finely granulated and powder mixtuures on metal mirror in moulds at the production of high-quality billets, blooms and slabs. Variants of mechanical and pneumo-mechaanical SFM supply elaborated. At the mechanical supply the fine material from the feeding hopper is moved at a adjusted distance bby a rigid horizontally located screw. At the pneumo-mechanical supply the metered doze of the granular mixture is delivered by a sshort vertical screw, the lower part of which is located in the mixing chamber attached from below to the hopper and equipped with ann ejector serving for pneumatic supply of the SFM in a stream of transporting gas. It was proposed to use flexible spiral screws in the ffuture facilities of mechanical SFM feeding. It will enable to eliminate the restrictions stipulated by the lack of free surface for locatiion of the facility in the working zone of the tundish, as well as to decrease significantly the mass of its movable part and to decreaase the necessary power of the carriage moving mechanism driver. The novelty of the proposed technical solutions is protected by thhree patents. The reduction of 10–15% in the consumption of slag-forming mixtures during the transition from manual to mechanizeed feeding confirmed. The resulting economic effect from the implementation of technical development enables to recoup the costs inncurred within 8–10 months.


2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


2019 ◽  
Vol 1 (02) ◽  
pp. 64-67
Author(s):  
Meilisha Putri Pertiwi ◽  
Suci Siti Lathifah

Research on the condition of the nesting habitat of Chelonia mydas (green turtle) in Pangumbahan Beach, Ujung Genteng, South Sukabumi has been carried out. Data retrieval is done 6 times for 2 days, 27-28 November 2017 at 3 observation stations. The abiotic parameters measured include surface temperature and depth of 50 cm, surface humidity and depth of 50 cm, beach width, beach slope, and the size of sand grains. While the biotic parameters measured were density, relative density, the frequency of attendance, and distribution patterns of Pandanus tectorius (sea pandanus) vegetation. Based on the results of data processing, the biophysical conditions in Pangumbahan Beach are still suitable for the Chelonia mydas nesting habitat. It also got clear evidence of the many Chelonia mydas landings during the data collection.


Sign in / Sign up

Export Citation Format

Share Document