Effects of vortex generator jet on corner separation/stall in high-turning compressor cascade

2016 ◽  
Vol 22 (6) ◽  
pp. 555-562 ◽  
Author(s):  
Huaping Liu ◽  
Deying Li ◽  
Huanlong Chen ◽  
Dongfei Zhang
Author(s):  
Tan Zheng ◽  
Xiaoqing Qiang ◽  
Jinfang Teng

This paper presents a numerical investigation to explore the effects of vortex generators on a high speed compressor cascade. Secondary flow effects like the corner separation vortex have an influence on the performance of a compressor cascade such as leading to increased losses. In order to control the corner separation vortex and reduce losses, an extensive study of vortex generators applied to a compressor cascade is conducted. A preliminary study by steady 3D RANS simulations is performed using the Spalart-Allmaras turbulence model. The aerodynamic performance as well as the behavior of the corner separation vortex is investigated in the compressor cascade without vortex generators. Then, a vortex generator is added to the cascade, which is numerically simulated. Various configurations are considered, which are decided by the height and installation angle of the vortex generator. Comparison of the performance attained by these configurations results in an optimum scheme that has minimum losses. Furthermore, unsteady 3D DES simulations are performed with the optimum configuration. This method that predicts the flow field more precisely could help verify the accuracy of the RANS results. Finally, by analyzing all the resulting aerodynamic performance and numerical flow phenomena, the mechanism of vortex-vortex interaction is presented and discussed, which could be a criterion to reduce the corner separation flow and enhance the performance of axial compressors.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Alexander Hergt ◽  
Robert Meyer ◽  
Karl Engel

The performance of a compressor cascade is considerably influenced by secondary flow effects, like the cross flow on the end wall as well as the corner separation between the wall and the vane. An extensive experimental study of vortex generator application in a highly loaded compressor cascade was performed in order to control these effects and enhance the aerodynamic performance. The results of the study will be used in future projects as a basis for parameterization in the design and optimization process for compressors in order to develop novel nonaxisymmetric endwalls as well as for blade modifications. The study includes the investigation of two vortex generator types with different geometrical forms and their application on several positions in the compressor cascade. The investigation includes a detailed description of the secondary flow effects in the compressor cascade, which is based on numerical and experimental results. This gives the basis for a specific approach of influencing the cascade flow by means of vortex generators. Depending on the vortex generator type and position, there is an impact on the end wall cross flow, the development of the horse shoe vortex at the leading edge of the vane, and the extent of the corner separation achieved by improved mixing within the boundary layer. The experiments were carried out on a compressor cascade at a high-speed test facility at DLR in Berlin at minimum loss (design point) and off-design of the cascade at Reynolds numbers up to Re = 0.6 × 106 (based on 40-mm chord) and Mach numbers up to M = 0.7. At the cascade design point, the total pressure losses could be reduced by up to 9% with the vortex generator configuration, whereas the static pressure rise was nearly unaffected. Furthermore, the cascade deflection could be influenced considerably by vortex generators and also an enhancement of the cascade stall range could be achieved. All these results will be presented and discussed with respect to secondary flow mechanisms. Finally, the general application of vortex generators in axial compressors will be discussed.


Author(s):  
Alexander Hergt ◽  
Robert Meyer ◽  
Karl Engel

The performance of a compressor cascade is considerably influenced by secondary flow effects, like the cross flow on the end wall as well as the corner separation between the wall and the vane. An extensive experimental study of vortex generator application in a highly loaded compressor cascade was performed, in order to control these effects and enhance the aerodynamic performance. The results of the study will be used in future projects as a basis for parameterization in the design and optimization process for compressors in order to develop novel non-axisymmetric endwall as well as for blade modifications. The study includes the investigation of two vortex generator types, with different geometrical forms and their application on several positions in the compressor cascade. The investigation includes a detailed description of the secondary flow effects in the compressor cascade which is based on numerical and experimental results. This gives the basis for a specific approach of influencing the cascade flow by means of vortex generators. Depending on the vortex generator type and position, there is an impact on the end wall cross flow, the development of the horse shoe vortex at the leading edge of the vane and the extent of the corner separation achieved by improved mixing within the boundary layer. The experiments were carried out on a compressor cascade at a high-speed test facility at the DLR in Berlin at minimum loss (design point) and off-design of the cascade at Reynolds numbers up to Re = 0.6 × 106 (based on 40 mm chord) and Mach numbers up to M = 0.7. The cascade consisted of five vanes and their profiles represent the cut near hub of the stator vanes of the single stage axial compressor of the Technical University of Darmstadt. At the cascade design point the total pressure losses could be reduced by up to 9 percent with vortex generator configuration whereas the static pressure rise was nearly unaffected. Furthermore, the cascade deflection could be influenced considerably by vortex generators and also an enhancement of the cascade stall range could be achieved. All these results will be presented and discussed with respect to secondary flow mechanisms.


Author(s):  
Cong Chen ◽  
Jianyang Yu ◽  
Fu Chen

In order to explore the control mechanism of vortex generator jet, which is located in the passage (PVGJ), on the separation flow, the influence of the pitch angle, skew angle, locations and jet-to-inflow ratio are studied using numerical methods in a high subsonic compressor cascade. The changing of the flow pattern is also analyzed in detail. The results show that the control effect of the end-wall vortex generator jet located in the passage is better than the leading edge one and the aerodynamic performance is effectively improved. The maximum total pressure loss coefficient decreases by 12% and the static pressure coefficient increases by 5.2% while the jet-to-inflow ratio is only 0.3%. The control effect is sensitive to the change of jet parameters. When 0 deg < β < 80 deg, 20 deg < α < 50 deg,, x < 0.5B, y < 0.15t, the vortex generation jet could acquire an ideal control effect. As the jet mass increases, the total pressure loss coefficient gradually reduces. The VGJ prevent separation mainly by bringing high momentum fluid into the near wall region and by promoting momentum transport through turbulent mixing in previous studies. Both the LVGJ and PVGJ mainly take advantage of jet vortex to prevent the cross flow from interacting with the suction side boundary layer.


2020 ◽  
Vol 37 (2) ◽  
pp. 95-109
Author(s):  
Longting Li ◽  
Yanping Song ◽  
Fu Chen

AbstractA combined flow control method based on positively bowed blade and endwall vortex generator jet (VGJ) was performed to a compressor cascade under three kinds of inlet conditions. The results show that the endwall VGJ can further decrease the total losses in positively bowed cascades. At 0° incidence with zero inlet boundary layer, the separation type in the positively bowed blade is open, with the VGJ, the loss reduction is 2.7 %. As the inlet boundary layer thickens at 0° incidence, the separation region increases with the separation type keeping unchanged, the loss reduction increasing to 11.73 %. As the incidence rises to +7° with zero inlet boundary layer, the separation type converts into closed and the flow separation is the severest in the three cases, with the VGJ, however, the loss reduction is just 7.4 %, which means that the control effect of endwall VGJ not only depends on the size of separation region but also relies on the type of separation mode. If the separation type is open, as the size of separation region expands, the control effectiveness of endwall VGJ increases; if the separation type converts into closed with the further aggravation of flow field, that control effect will decrease.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


Author(s):  
Jean-François Monier ◽  
Nicolas Poujol ◽  
Mathieu Laurent ◽  
Feng Gao ◽  
Jérôme Boudet ◽  
...  

The present study aims at analysing the Boussinesq constitutive relation validity in a corner separation flow of a compressor cascade. The Boussinesq constitutive relation is commonly used in Reynolds-averaged Navier-Stokes (RANS) simulations for turbomachinery design. It assumes an alignment between the Reynolds stress tensor and the zero-trace mean strain-rate tensor. An indicator that measures the alignment between these tensors is used to test the validity of this assumption in a high fidelity large-eddy simulation. Eddy-viscosities are also computed using the LES database and compared. A large-eddy simulation (LES) of a LMFA-NACA65 compressor cascade, in which a corner separation is present, is considered as reference. With LES, both the Reynolds stress tensor and the mean strain-rate tensor are known, which allows the construction of the indicator and the eddy-viscosities. Two constitutive relations are evaluated. The first one is the Boussinesq constitutive relation, while the second one is the quadratic constitutive relation (QCR), expected to render more anisotropy, thus to present a better alignment between the tensors. The Boussinesq constitutive relation is rarely valid, but the QCR tends to improve the alignment. The improvement is mainly present at the inlet, upstream of the corner separation. At the outlet, the correction is milder. The eddy-viscosity built with the LES results are of the same order of magnitude as those built as the ratio of the turbulent kinetic energy k and the turbulence specific dissipation rate ω. They also show that the main impact of the QCR is to rotate the mean strain-rate tensor in order to realign it with the Reynolds stress tensor, without dilating it.


Sign in / Sign up

Export Citation Format

Share Document