scholarly journals Short tutorial. Treatment options in light chain amyloidosis and monoclonal gammopathy of renal significance

Author(s):  
Maria T. Krauth ◽  
Hermine Agis

SummaryAL amyloidosis (AL) and monoclonal gammopathy of renal significance (MGRS) are both paraprotein-associated diseases. Both entities are based on a monoclonal paraprotein produced by a clonal plasma-cell population like in monoclonal gammopathy of undetermined significance (MGUS) or by a B-cell population like in low grade lymphoma. Per definition MGUS and low-grade lymphoma do not require treatment. But in rare cases the monoclonal M‑gradient acts as a “toxic” protein inducing severe multimodal organ damage as in AL and MGRS. Urgent treatment is indicated in AL and in MGRS to avoid irreparable loss of organ function or death. No treatment is currently approved in Europe for AL or MGRS. On January 15, 2021 the US Food and Drug Administration approved the monoclonal anti-CD38 antibody for treatment of AL. To minimize the serum M‑gradient concentration, a clone directed therapy as in multiple myeloma or B‑cell malignancies treatment regimens can be applied. In AL, an additional treatment option is under investigation. These special drugs are directed against the typical amyloid-fibrils responsible for deposition formation. An additional and important consideration in this special field of rare diseases is the option of organ transplantation in particular kidney transplantation in MGRS. All these treatment modalities are addressed in this article.

2017 ◽  
Vol 1 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Nelson Leung

Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant condition signifying the presence of a B-cell lymphoproliferative disorder. By connotation, it should not meet the definition of multiple myeloma, Waldenström macroglobulinemia, or lymphoma. In addition, it cannot be responsible for any end-organ damage. Similar to polyclonal immunoglobulins (Ig), monoclonal gammopathy has been increasingly recognized as an important cause of kidney disease. The recent introduction of the term “monoclonal gammopathy of renal significance” (MGRS) highlights this importance. MGRS is similar to MGUS in which the B-cell lymphoproliferative disorder has not reached a state considered to be malignant, but differentiates itself by the presence of a monoclonal gammopathy related kidney disease. This distinction is important since it separates MGRS, which is not benign, from the MGUS condition, which is benign. It also allows for a better classification of kidney diseases caused by monoclonal gammopathies. There are many renal diseases and lesions that have been identified to be secondary to MGRS. In addition, MGRS-associated renal diseases can mimic polyclonal Ig mediated kidney diseases. Kidney biopsy with immunofluorescence is the key for diagnosing MGRS-related kidney diseases. Once the diagnosis is made, a specific evaluation is needed for the diagnosis and treatment of MGRS-related kidney diseases that differs from the polyclonal Ig counterparts.


Hematology ◽  
2012 ◽  
Vol 2012 (1) ◽  
pp. 595-603 ◽  
Author(s):  
Giampaolo Merlini ◽  
Giovanni Palladini

Abstract Monoclonal gammopathy of undetermined significance (MGUS) is an asymptomatic plasma cell disorder occurring in 4.2% of adults > 50 years of age, which can progress into symptomatic diseases either through proliferation of the plasma cell clone, giving rise to multiple myeloma and other lymphoplasmacellular neoplasms, or through organ damage caused by the monoclonal protein, as seen in light-chain amyloidosis and related conditions. Differential diagnosis of asymptomatic and symptomatic monoclonal gammopathies is the determinant for starting therapy. The criteria for determining end-organ damage should include markers of organ injury caused by the monoclonal protein. Patient assessment and optimal follow-up are now performed using risk stratification models that should also take into account the risk of developing AL amyloidosis. Patients with low-risk MGUS (approximately 40% of all MGUS patients) need limited assessment and very infrequent follow-up. The ongoing development of novel molecular biomarkers and advanced imaging techniques will improve the identification of high-risk patients who may benefit from early therapeutic intervention through innovative clinical trials.


2017 ◽  
Vol 141 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Andras Khoor ◽  
Thomas V. Colby

Context.—Amyloidosis is a heterogeneous group of diseases characterized by the deposition of congophilic amyloid fibrils in the extracellular matrix of tissues and organs. To date, 31 fibril proteins have been identified in humans, and it is now recommended that amyloidoses be named after these fibril proteins. Based on this classification scheme, the most common forms of amyloidosis include systemic AL (formerly primary), systemic AA (formerly secondary), systemic wild-type ATTR (formerly age-related or senile systemic), and systemic hereditary ATTR amyloidosis (formerly familial amyloid polyneuropathy). Three different clinicopathologic forms of amyloidosis can be seen in the lungs: diffuse alveolar-septal amyloidosis, nodular pulmonary amyloidosis, and tracheobronchial amyloidosis. Objective.—To clarify the relationship between the fibril protein–based amyloidosis classification system and the clinicopathologic forms of pulmonary amyloidosis and to provide a useful guide for diagnosing these entities for the practicing pathologist. Data Sources.—This is a narrative review based on PubMed searches and the authors' own experiences. Conclusions.—Diffuse alveolar-septal amyloidosis is usually caused by systemic AL amyloidosis, whereas nodular pulmonary amyloidosis and tracheobronchial amyloidosis usually represent localized AL amyloidosis. However, these generalized scenarios cannot always be applied to individual cases. Because the treatment options for amyloidosis are dependent on the fibril protein–based classifications and whether the process is systemic or localized, the workup of new clinically relevant cases should include amyloid subtyping (preferably with mass spectrometry–based proteomic analysis) and further clinical investigation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 359-359
Author(s):  
Weizhou Zhang ◽  
Arnon P. Kater ◽  
Han-Yu Chuang ◽  
Thomas Enzler ◽  
George F. Widhopf ◽  
...  

Abstract Abstract 359 Chromosomal translocations involving c-Myc are frequently found in high grade lymphoma and multiple myeloma. In contrast, c-Myc translocations rarely occur in low-grade lymphomas/leukemias like chronic lymphocytic leukemia (CLL), but when present they are associated with rapid disease progression and bad prognosis. Overexpression of c-myc may also be the result of increased transcription by several proto-oncogene transcription factors, including NF-kB. Mice with c-Myc de-regulation at different stages of B cell development develop either aggressive B cells lymphomas or plasma cell neoplasm. So far, no c-Myc mouse model developed low-grade lymphoma/leukemia. iMycCa mice develop an expansion of CD5+ peritoneal B1 cells, as compared with WT littermates mice. These mice have a normal life-span and very rarely develop B cell lymphoma at older age. Interestingly, in iMycCa mice mature B cells, but not plasma cells,could be rescued from apoptosis by administration of B cell-activating factor belonging to the TNF family (BAFF). To our surprise, double transgenic iMycCa/Baff-Tg (Myc/Baff) mice developed a disease resembling human CLL, with dramatically shorter mean survival than parental strains, due to early onset and rapid clonal expansion of a mature CD5+B220low B cell population. Those cells transferred the disease into Baff-Tg (Baff) mice with marked infiltration in lymphoid organs and bone marrow. Gene-expression analyses revealed that among the genes altered in Myc/Baff CD5+B220lowleukemia cells were those with known relevance to human CLL disease, including elevated anti-apoptotic Bcl2 family members. Apart from studies on individual genes, sub-network analysis was performed which showed enrichment of apoptosis-related and stress-induced gene sets in Myc/Baff CD5+CD3- leukemia cells. The NF-kB gene set, a major target downstream of BAFF signaling, was also enriched in Myc/Baff CD5+CD3- leukemia cells. We observed a continuum in levels of c-MYC mRNA in 166 samples using Affymetrix array analyses. Changes in c-Myc protein expression were confirmed by immunoblot analyses and correlated with disease progression. In accordance with the functions of c-Myc as a promoter of cell cycle progression, as well as apoptosis, we found enhanced spontaneous cell death in vitro in CLL cells expressing high levels of c-Myc, which could be abrogated by co culture with BAFF expressing nurse-like cells (NLC) or recombinant BAFF. In addition to its anti-apoptotic role, BAFF treatment of primary human CLL cells led to dramatically enhanced expression of c-Myc through the IKK/NF-kB pathway. Inhibition of the NF-kB pathway significantly reduced viability of both Myc/Baff CD5+CD3- leukemia cells and human CLL cells co-cultured with NLC. Also it significantly lowered CD5+B220low leukemia cell population in blood and spleen, and prevented the infiltration of leukemia cells into lymph nodes and bone marrow of transplanted mice. This study demonstrates a potential pathologic role for c-Myc, in the pathogenesis and progression of CLL. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 135 (3) ◽  
pp. 172-190 ◽  
Author(s):  
Eli Muchtar ◽  
Francis K. Buadi ◽  
Angela Dispenzieri ◽  
Morie A. Gertz

Immunoglobulin amyloid light-chain (AL) amyloidosis is the most common form of systemic amyloidosis, where the culprit amyloidogenic protein is immunoglobulin light chains produced by marrow clonal plasma cells. AL amyloidosis is an infrequent disease, and since presentation is variable and often nonspecific, diagnosis is often delayed. This results in cumulative organ damage and has a negative prognostic effect. AL amyloidosis can also be challenging on the diagnostic level, especially when demonstration of Congo red-positive tissue is not readily obtained. Since as many as 31 known amyloidogenic proteins have been identified to date, determination of the amyloid type is required. While several typing methods are available, mass spectrometry has become the gold standard for amyloid typing. Upon confirming the diagnosis of amyloidosis, a pursuit for organ involvement is essential, with a focus on heart involvement, even in the absence of suggestive symptoms for involvement, as this has both prognostic and treatment implications. Details regarding initial treatment options, including stem cell transplantation, are provided in this review. AL amyloidosis management requires a multidisciplinary approach with careful patient monitoring, as organ impairment has a major effect on morbidity and treatment tolerability until a response to treatment is achieved and recovery emerges.


2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Hammad Z ◽  
◽  
Hernandez E ◽  
Tate S ◽  
◽  
...  

Monoclonal Gammopathy of Undetermined Significance (MGUS) is a condition in which M protein, an abnormal monoclonal immunoglobulin, is present in the blood at a nonmalignant level. Specifically, it is defined by: blood serum M protein concentration <3 g/dL (<30 g/L), <10% plasma cells in the bone marrow, and no evidence of end organ damage [1,2]. Evidence of end organ damage includes hypercalcemia, renal insufficiency, anemia, and bone lesions. These are indicative of MGUS progression and which can be attributed to the monoclonal plasma cell proliferative process [3]. MGUS occurs in 3% of the general population older than 50 years. Incidence increases with age and varies with sex with higher rates observered in males than females [1,4]. MGUS is the most common plasma cell disorder, with 60% of patients that present to the Mayo Clinic with a monoclonal gammopathy being diagnosed with MGUS [3]. While it is typically an asymptomatic condition, it is premalignant disorder to other monoclonal gammopathies. Multiple Myeloma (MM) is almost always preceded by MGUS and the majority of patients will have detectable levels of M protein for at least 5 years prior to MM diagnosis [5,6]. MGUS also precedes immunoglobulin light chain (AL) amyloidosis and Waldenstrom Macroglobulinemia (WM) and tends to progress to disorders at a fixed but unrelenting rate of 1% per year [4].


Blood ◽  
2020 ◽  
Vol 136 (23) ◽  
pp. 2620-2627
Author(s):  
Giovanni Palladini ◽  
Paolo Milani ◽  
Giampaolo Merlini

Abstract In amyloid light chain (AL) amyloidosis, a small B-cell clone, most commonly a plasma cell clone, produces monoclonal light chains that exert organ toxicity and deposit in tissue in the form of amyloid fibrils. Organ involvement determines the clinical manifestations, but symptoms are usually recognized late. Patients with disease diagnosed at advanced stages, particularly when heart involvement is present, are at high risk of death within a few months. However, symptoms are always preceded by a detectable monoclonal gammopathy and by elevated biomarkers of organ involvement, and hematologists can screen subjects who have known monoclonal gammopathy for amyloid organ dysfunction and damage, allowing for a presymptomatic diagnosis. Discriminating patients with other forms of amyloidosis is difficult but necessary, and tissue typing with adequate technology available at referral centers, is mandatory to confirm AL amyloidosis. Treatment targets the underlying clone and should be risk adapted to rapidly administer the most effective therapy patients can safely tolerate. In approximately one-fifth of patients, autologous stem cell transplantation can be considered up front or after bortezomib-based conditioning. Bortezomib can improve the depth of response after transplantation and is the backbone of treatment of patients who are not eligible for transplantation. The daratumumab+bortezomib combination is emerging as a novel standard of care in AL amyloidosis. Treatment should be aimed at achieving early and profound hematologic response and organ response in the long term. Close monitoring of hematologic response is vital to shifting nonresponders to rescue treatments. Patients with relapsed/refractory disease are generally treated with immune-modulatory drugs, but daratumumab is also an effective option.


Blood ◽  
2018 ◽  
Vol 132 (14) ◽  
pp. 1478-1485 ◽  
Author(s):  
Jean-Paul Fermand ◽  
Frank Bridoux ◽  
Angela Dispenzieri ◽  
Arnaud Jaccard ◽  
Robert A. Kyle ◽  
...  

Abstract Monoclonal gammopathy is a common condition, particularly in the elderly. It can indicate symptomatic multiple myeloma or another overt malignant lymphoid disorder requiring immediate chemotherapy. More frequently, it results from a small and/or quiescent secreting B-cell clone, is completely asymptomatic, and requires regular monitoring only, defining a monoclonal gammopathy of unknown significance (MGUS). Sometimes, although quiescent and not requiring any treatment per se, the clone is associated with potentially severe organ damage due to the toxicity of the monoclonal immunoglobulin or to other mechanisms. The latter situation is increasingly observed but still poorly recognized and frequently undertreated, although it often requires rapid specific intervention to preserve involved organ function. To improve early recognition and management of these small B-cell clone–related disorders, we propose to introduce the concept of monoclonal gammopathy of clinical significance (MGCS). This report identifies the spectrum of MGCSs that are classified according to mechanisms of tissue injury. It highlights the diversity of these disorders for which diagnosis and treatment are often challenging in clinical practice and require a multidisciplinary approach. Principles of management, including main diagnostic and therapeutic procedures, are also described. Importantly, efficient control of the underlying B-cell clone usually results in organ improvement. Currently, it relies mainly on chemotherapy and other anti–B-cell/plasma cell agents, which should aim at rapidly producing the best hematological response.


Hematology ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 363-371
Author(s):  
Giovanni Palladini ◽  
Paolo Milani ◽  
Giampaolo Merlini

Abstract In amyloid light chain (AL) amyloidosis, a small B-cell clone, most commonly a plasma cell clone, produces monoclonal light chains that exert organ toxicity and deposit in tissue in the form of amyloid fibrils. Organ involvement determines the clinical manifestations, but symptoms are usually recognized late. Patients with disease diagnosed at advanced stages, particularly when heart involvement is present, are at high risk of death within a few months. However, symptoms are always preceded by a detectable monoclonal gammopathy and by elevated biomarkers of organ involvement, and hematologists can screen subjects who have known monoclonal gammopathy for amyloid organ dysfunction and damage, allowing for a presymptomatic diagnosis. Discriminating patients with other forms of amyloidosis is difficult but necessary, and tissue typing with adequate technology available at referral centers, is mandatory to confirm AL amyloidosis. Treatment targets the underlying clone and should be risk adapted to rapidly administer the most effective therapy patients can safely tolerate. In approximately one-fifth of patients, autologous stem cell transplantation can be considered up front or after bortezomib-based conditioning. Bortezomib can improve the depth of response after transplantation and is the backbone of treatment of patients who are not eligible for transplantation. The daratumumab+bortezomib combination is emerging as a novel standard of care in AL amyloidosis. Treatment should be aimed at achieving early and profound hematologic response and organ response in the long term. Close monitoring of hematologic response is vital to shifting nonresponders to rescue treatments. Patients with relapsed/refractory disease are generally treated with immune-modulatory drugs, but daratumumab is also an effective option.


Blood ◽  
2020 ◽  
Vol 135 (16) ◽  
pp. 1344-1352 ◽  
Author(s):  
Christopher Melani ◽  
Elaine S. Jaffe ◽  
Wyndham H. Wilson

Abstract Lymphomatoid granulomatosis (LYG) is a rare Epstein-Barr virus (EBV)–driven B-cell lymphoproliferative disease (LPD). This disease is hypothesized to result from defective immune surveillance of EBV, with most patients showing evidence of immune dysfunction, despite no known primary immunodeficiency. Pathologically, LYG is graded by the number and density of EBV+ atypical B cells, and other characteristic findings include an angioinvasive/angiodestructive reactive T-cell infiltrate and various degrees of necrosis. Clinically, LYG universally involves the lungs with other common extranodal sites, including skin, central nervous system, liver, and kidneys. Nodal and/or bone marrow involvement is extremely rare and, if present, suggests an alternative diagnosis. Treatment selection is based on histologic grade and underlying pathobiology with low-grade disease hypothesized to be immune-dependent and typically polyclonal and high-grade disease to be immune-independent and typically oligoclonal or monoclonal. Methods of augmenting the immune response to EBV in low-grade LYG include treatment with interferon-α2b, whereas high-grade disease requires immunochemotherapy. Given the underlying defective immune surveillance of EBV, patients with high-grade disease may have a recurrence in the form of low-grade disease after immunochemotherapy, and those with low-grade disease may progress to high-grade disease after immune modulation, which can be effectively managed with crossover treatment. In patients with primary refractory disease or in those with multiple relapses, hematopoietic stem cell transplantation may be considered, but its efficacy is not well established. This review discusses the pathogenesis of LYG and highlights distinct histopathologic and clinical features that distinguish this disorder from other EBV+ B-cell LPDs and lymphomas. Treatment options, including immune modulation and combination immunochemotherapy, are discussed.


Sign in / Sign up

Export Citation Format

Share Document