scholarly journals A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications

Author(s):  
Younghak Cho ◽  
Minseok Lee ◽  
Seonghyeon Park ◽  
Yesol Kim ◽  
Eunjung Lee ◽  
...  
2004 ◽  
Vol 43 (9A) ◽  
pp. 6008-6011 ◽  
Author(s):  
Woo Seok Yang ◽  
Sung Weon Kang ◽  
Jaewoo Lee ◽  
Sung Hae Jung ◽  
Yoon Tae Kim

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 450
Author(s):  
Hak Dong Cho ◽  
Deuk Young Kim ◽  
Jong-Kwon Lee

High crystalline ZnO nanorods (NRs) on Zn pre-deposited graphene/Cu sheet without graphene transfer process have been fabricated by self-catalyzed vapor-phase transport synthesis. Here, the pre-deposited Zn metal on graphene not only serves as a seed to grow the ZnO NRs, but also passivates the graphene underneath. The temperature-dependent photoluminescence spectra of the fabricated ZnO NRs reveal a dominant peak of 3.88 eV at 10 K associated with the neutral-donor bound exciton, while the redshifted peak by bandgap shrinkage with temperature and electron-lattice interactions leads a strong emission at 382 nm at room temperature. The optical absorption of the ZnO NRs/graphene hetero-nanostructure at this ultraviolet (UV) emission is then theoretically analyzed to quantify the absorption amount depending on the ZnO NR distribution. By simply covering the ZnO NR/graphene/Cu structure with the graphene/glass as a top electrode, it is observed that the current-voltage characteristic of the ZnO NR/graphene hetero-nanojunction device exhibits a photocurrent of 1.03 mA at 3 V under a light illumination of 100 μW/cm2. In particular, the suggested graphene/ZnO NRs/graphene hybrid-nanostructure-based devices reveal comparable photocurrents at a bidirectional bias, which can be a promising platform to integrate 1D and 2D nanomaterials without complex patterning process for UV device applications.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 401
Author(s):  
Noresah Said ◽  
Ying Siew Khoo ◽  
Woei Jye Lau ◽  
Mehmet Gürsoy ◽  
Mustafa Karaman ◽  
...  

In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.


2004 ◽  
Vol 259-260 ◽  
pp. 592-595
Author(s):  
Zhen Long Wang ◽  
Yu Fang ◽  
Wan Sheng Zhao ◽  
K. Cheng

2010 ◽  
Vol 11 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Niyaz Mohammad Mahmoodi ◽  
Fereshteh Moghimi ◽  
Mokhtar Arami ◽  
Firoozmehr Mazaheri

2019 ◽  
Vol 282 ◽  
pp. 60-68 ◽  
Author(s):  
Shisheng Su ◽  
Gaoshan Jing ◽  
Miaoqi Zhang ◽  
Baoxia Liu ◽  
Xiurui Zhu ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-4

Todays, researchers are challenging with manufacturing polymeric nanocomposites reinforced with ceramic particles due to two inherent properties of ceramic reinforcement particles, particle agglomeration and incompatibility between hydrophilic ceramic particles and hydrophobic polymeric matrix. So in this study, we used nano-Hydroxyapatite (n-HA) as ceramic material and Stearic acid as amphiphilic material for coating n-HA, hydroxysteric acid (SA) surfactant was used for surface coating particles between the hydrophilic HA powders and the hydrophobic polymers. The surface modification and effect of this method were evaluated by by Fourier transformation infrared (FTIR), x-ray diffractometer (XRD), thermal gravimetric analysis (TGA) and Scanning electron microscopy (SEM). The result of FTIR showed that n-HA surfaces were modified successfully and the modification method had the proper grafting amount according to TGA due to this method of modification will be proper for coating reinforcement particles in polymeric matrix.


Sign in / Sign up

Export Citation Format

Share Document