scholarly journals Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 401
Author(s):  
Noresah Said ◽  
Ying Siew Khoo ◽  
Woei Jye Lau ◽  
Mehmet Gürsoy ◽  
Mustafa Karaman ◽  
...  

In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.

2018 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Romaya Sitha Silitonga ◽  
Nurul Widiastuti ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed that the modified membrane has a peak at 1655 cm-1, indicating the imine group (–N=C)- that was formed due to the crosslink between amine group from chitosan and aldehyde group from glutaraldehyde. Results showed that the contact angle of the modified membrane decreases to 77.22° indicated that the membrane hydrophilic properties (< 90°) were enhanced. Prior to the modification, the contact angle of the PVDF membrane was 90.24°, which shows hydrophobic properties (> 90°). The results of porosity, Ɛ (%) for unmodified PVDF membrane was 55.39%, while the modified PVDF membrane has a porosity of 81.99%. Similarly, by modifying the PVDF membrane, pure water flux increased from 0.9867 L/m2h to 1.1253 L/m2h. The enhancement of porosity and pure water flux for the modified PVDF membrane was due to the improved surface hydrophilicity of PVDF membrane.


2013 ◽  
Vol 3 (3) ◽  
pp. 217-223
Author(s):  
Jong-Min Lee ◽  
Hyun-Woong Lee ◽  
Yeo-Jin Kim ◽  
Hyung-Gyu Park ◽  
Sung-Pyo Hong ◽  
...  

A commercial polyamide seawater reverse osmosis membrane (Woongjin Chemical CSM) was surface-modified with fluoro-compounds. The effect of this surface modification on both water and NaCl permeability before and after organic fouling was investigated. The structural and electrical characteristics of the membrane surface were measured using atomic force microscopy and electrokinetic analysis respectively. When modified, the membrane surface showed only slight changes to the surface roughness and surface charges. The modified membrane also showed highly improved fouling resistance during cross-flow filtration of characteristic seawater organic foulants (humic acid and sodium alginate). Contact angle analysis using the Owens-Wendt theory was used to calculate the surface energy of the modified membrane. Lower surface energy of the modified membrane was identified as the key factor in the improved fouling resistance of the membranes.


2021 ◽  
Vol 8 (2) ◽  
pp. 11-20
Author(s):  
Abdullah Adnan Abdulkarim ◽  
Yosra Mohammed Mahdi ◽  
Haider Jasim Mohammed

Polyethersulfone/zinc oxide mixed matrix hollow fiber membrane was fabricated using dry/wet phase inversion method. Zinc oxide nanoparticles (2 wt.%) were dispersed in N,N-dimethylacetamide (DMAc) solvent in the present of polyvinylepyrrolidene. The dope solution speed and take up speed was similar with performing the spinning process at room temperature. The produced membranes were characterized using scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier transform infrared (FTIR) analysis. Membrane performance was evaluated using pure water flux (PWF), relative flux ration (RFR), and total organic carbon (TOC) removal efficiency. From SEM analysis, it was found that the nanoparticles were well dispersed in the polymeric matrix. From AFM results, it was observed that the modified membrane has higher surface roughness. The PWF of the modified membrane was enhanced, while the RFR showed to increase due to rougher membrane surface. The NOM remaoval of PES/ZnO membrane was higher than that of PES membrane and reached to 27% compared to only 16.9 % for pristine PES.


2014 ◽  
Vol 931-932 ◽  
pp. 63-67 ◽  
Author(s):  
Pattama Phomdum ◽  
Watchanida Chinpa

In this study, the morphologies, the hydrophilicity, and the anti-fouling of poly (ether imide) (PEI) membrane modified with an aqueous solution of polyether diamine predominantly PEO backbone (PEO-diamine) were investigated. A decrease in water contact angle and an increase in water absorption ratio indicated the hydrophilicity of modified membrane. Scanning Electron Microscope (SEM) showed a thinner skin layer of membrane and pores on the membrane surface for modified PEI membrane providing an increment of pure water flux and a reduction of BSA rejection of membrane. Under the protein filtration study, it was found that the flux recovery ratio of modified PEI membrane was higher than that of the unmodified PEI membrane.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 216
Author(s):  
Hazel Lynn C. Maganto ◽  
Micah Belle Marie Yap Ang ◽  
Gian Vincent C. Dizon ◽  
Alvin R. Caparanga ◽  
Ruth R. Aquino ◽  
...  

The advancement in membrane science and technology, particularly in nanofiltration applications, involves the blending of functional nanocomposites into the membranes to improve the membrane property. In this study, Ag-polydopamine (Ag-PDA) particles were synthesized through in situ PDA-mediated reduction of AgNO3 to silver. Infusing Ag-PDA particles into polyethersulfone (PES) matrix affects the membrane property and performance. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of Ag-PDA particles on the membrane surface. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) describe the morphology of the membranes. At an optimum concentration of Ag-PDA particles (0.3 wt % based on the concentration of PES), the modified membrane exhibited high water flux 13.33 L∙m−2∙h−1 at 4 bar with high rejection for various dyes of >99%. The PESAg-PDA0.3 membrane had a pure water flux more than 5.4 times higher than that of a pristine membrane. Furthermore, in bacterial attachment using Escherichia coli, the modified membrane displayed less bacterial attachment compared with the pristine membrane. Therefore, immobilizing Ag-PDA particles into the PES matrix enhanced the membrane performance and antibacterial property.


2004 ◽  
Vol 259-260 ◽  
pp. 592-595
Author(s):  
Zhen Long Wang ◽  
Yu Fang ◽  
Wan Sheng Zhao ◽  
K. Cheng

2010 ◽  
Vol 11 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Niyaz Mohammad Mahmoodi ◽  
Fereshteh Moghimi ◽  
Mokhtar Arami ◽  
Firoozmehr Mazaheri

Sign in / Sign up

Export Citation Format

Share Document