scholarly journals Von der Wurzel ins Labor: Meerrettichperoxidase produziert in E. coli

BIOspektrum ◽  
2021 ◽  
Vol 27 (7) ◽  
pp. 773-775
Author(s):  
Julian Ebner ◽  
Diana Humer ◽  
Oliver Spadiut

AbstractThe enzyme Horseradish Peroxidase (HRP) is omnipresent in modern biotechnology. Although promising for therapeutic purposes, no suitable production process for this enzyme has been available until now. Medical applications require the enzyme to be highly pure, homogenous and well-defined. We have developed an efficient production process for recombinant HRP from Escherichia coli inclusion bodies. With this strategy we are able to provide active, highly pure and non-glycosylated enzyme at competitive yields.

2020 ◽  
Vol 14 (4) ◽  
pp. 269-282
Author(s):  
Sadra S. Tehrani ◽  
Golnaz Goodarzi ◽  
Mohsen Naghizadeh ◽  
Seyyed H. Khatami ◽  
Ahmad Movahedpour ◽  
...  

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


2005 ◽  
Vol 37 (4) ◽  
pp. 265-269 ◽  
Author(s):  
Xi-Qiang Zhu ◽  
Su-Xia Li ◽  
Hua-Jun He ◽  
Qin-Sheng Yuan

Abstract The EC-SOD cDNA was cloned by polymerase chain reaction (PCR) and inserted into the Escherichia coli expression plasmid pET-28a(+) and transformed into E. coli BL21(DE3). The corresponding protein that was overexpressed as a recombinant His6-tagged EC-SOD was present in the form of inactive inclusion bodies. This structure was first solubilized under denaturant conditions (8.0 M urea). Then, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column using a linear urea gradient from 8.0 M to 1.5 M in the presence of glutathione (GSH) and oxidized glutathione (GSSG). The mass ratio of GSH to GSSG was 4:1. The purified enzyme was active, showing that at least part of the protein was properly refolded. The protein was made concentrated by ultrafiltration, and then isolated using Sephacryl S-200 HR. There were two protein peaks in the A280 profile. Based on the results of electrophoresis, we concluded that the two fractions were formed by protein subunits of the same mass, and in the fraction where the molecular weight was higher, the dimer was formed through the disulfide bond between subunits. Activities were detected in the two fractions, but the activity of the dimer was much higher than that of the single monomer. The special activities of the two fractions were found to be 3475 U/mg protein and 510 U/mg protein, respectively.


2020 ◽  
Vol 47 (12) ◽  
pp. 1117-1132
Author(s):  
Katharina Novak ◽  
Juliane Baar ◽  
Philipp Freitag ◽  
Stefan Pflügl

AbstractThe aim of this study was to establish isobutanol production on chemically defined medium in Escherichia coli. By individually expressing each gene of the pathway, we constructed a plasmid library for isobutanol production. Strain screening on chemically defined medium showed successful production in the robust E. coli W strain, and expression vector IB 4 was selected as the most promising construct due to its high isobutanol yields and efficient substrate uptake. The investigation of different aeration strategies in combination with strain improvement and the implementation of a pulsed fed-batch were key for the development of an efficient production process. E. coli W ΔldhA ΔadhE Δpta ΔfrdA enabled aerobic isobutanol production at 38% of the theoretical maximum. Use of cheese whey as raw material resulted in longer process stability, which allowed production of 20 g l−1 isobutanol. Demonstrating isobutanol production on both chemically defined medium and a residual waste stream, this study provides valuable information for further development of industrially relevant isobutanol production processes.


2020 ◽  
Author(s):  
Junchao Rao ◽  
Rongzhen Zhang ◽  
Guanyu Xu ◽  
Lihong Li ◽  
Yan Xu

Abstract Background: ( S )-1-phenyl-1,2-ethanediol is an important chiral intermediate in the synthesis of liquid crystals and chiral biphosphines.(S)-carbonyl reductase II from Candida parapsilosis catalyzes the conversion of 2-hydroxyacetophenone to ( S )-1-phenyl-1,2-ethanediol with NADPH as a cofactor. Glucose dehydrogenase with a Ala258Phe mutation is able to catalyze the oxidation of xylose with concomitant reduction of NADP + to NADPH, while endo-β-1,4-xylanase 2 catalyzes the conversion of xylan to xylose. In the present work, the Ala258Phe glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 were introduced into the ( S )-carbonyl reductase II-mediated chiral pathway to strengthen cofactor regeneration by using xylan as a naturally abundant co-substrate. Results: We constructed several coupled multi-enzyme systems by introducing ( S )-carbonyl reductase II, the A258F glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 into Escherichia coli . Different strains were produced by altering the location of the encoding genes on the plasmid. Only recombinant E. coli /pET-G-S-2 expressed all three enzymes, and this strain produced ( S )-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone as a substrate and xylan as a co-substrate. The optical purity was 100% and the yield was 98.3% (6 g/L 2-HAP) under optimal conditions of 35°C, pH 6.5 and a 2:1 substrate-co-substrate ratio. The introduction of A258F glucose dehydrogenase and endo-β-1,4-xylanase 2 into the ( S )-carbonyl reductase II-mediated chiral pathway caused a 54.6% increase in yield, and simultaneously reduced the reaction time from 48 h to 28 h. Conclusions: This study demonstrates efficient chiral synthesis using a pentose as a co-substrate to enhance cofactor regeneration. This provides a new approach for enantiomeric catalysis through the inclusion of naturally abundant materials.


Author(s):  
Nguyen Thi My Trinh ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Background: The recombinant human granulocyte colony stimulating factor con-jugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimula-ting Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. Methods: BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the con-jugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. Results: PEGylated GCSF was obtained with high purity (~97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). Conclusion: These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).


2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Yan Ge ◽  
Senlin Guo ◽  
Tao Liu ◽  
Chen Zhao ◽  
Duanhua Li ◽  
...  

ABSTRACT A nuclease from Yersinia enterocolitica subsp. palearctica (Nucyep) is a newly found thermostable nonspecific nuclease. The heat-resisting ability of this nuclease would be extremely useful in biological research or pharmaceutical production. However, the application of this nuclease is limited because of its poor yield. This research aimed to improve Nucyep productivity by producing a novel genetically engineered Escherichia coli and optimizing the production procedures. After 4 h of induction by lactose, the new genetically engineered E. coli can express a substantial amount of Nucyep in the form of inclusion bodies. The yield was approximately 0.3 g of inclusion bodies in 1 g of bacterial pellets. The inclusion bodies were extracted by sonication and solubilized in an 8 M urea buffer. Protein renaturation was successfully achieved by dilution method. Pure enzyme was obtained after subjecting the protein solution to anion exchange. The Nucyep showed its nonspecific and heat resistant properties as previously reported (Boissinot et  al. 2016). Through a quantification method, its activity was determined to be 1.3 × 10 6 Kunitz units (K.U.)/mg. These results can serve as a reference for increasing Nucyep production.


2020 ◽  
Author(s):  
Ran You ◽  
Lei Wang ◽  
Congrong Shi ◽  
Hao Chen ◽  
Shasha Zhang ◽  
...  

Abstract Background: The biosynthesis of high value-added compounds using metabolically engineered strains has received wide attention in recent years. Myo-inositol (inositol), an important compound in the pharmaceutics, cosmetics and food industries, is usually produced from phytate via a harsh set of chemical reactions. Recombinant Escherichia coli strains have been constructed by metabolic engineering strategies to produce inositol, but with a low yield. The proper distribution of carbon flux between cell growth and inositol production is a major challenge for constructing an efficient inositol-synthesis pathway in bacteria. Construction of metabolically engineered E. coli strains with high stoichiometric yield of inositol is desirable.Results: In the present study, we designed an inositol-synthesis pathway from glucose with a theoretical stoichiometric yield of 1 mol inositol/mol glucose. Recombinant E. coli strains with high stoichiometric yield (>0.7 mol inositol/mol glucose) were obtained. Inositol was successfully biosynthesized after introducing two crucial enzymes: inositol-3-phosphate synthase (IPS) from Trypanosoma brucei, and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild-type) and SG104 (ΔptsG::glk, ΔgalR::zglf, ΔpoxB::acs), a series of engineered strains for inositol production was constructed by deleting the key genes pgi, pfkA and pykF. Plasmid-based expression systems for IPS and IMP were optimized, and expression of the gene zwf was regulated to enhance the stoichiometric yield of inositol. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved from recombinant strain R15 (SG104, Δpgi, Δpgm, and RBSL5-zwf). Strain R04 (SG104 and Δpgi) reached high-density in a 1-L fermenter when using glucose and glycerol as a mixed carbon source. In scaled-up fed-batch bioconversion in situ using strain R04, 0.82 mol inositol/mol glucose was produced within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM) inositol.Conclusions: The biosynthesis of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provides an essential reference to obtain a suitable distribution of carbon flux between glycolysis and inositol synthesis.


2014 ◽  
Author(s):  
Iain Bower ◽  
Bobby Wenqiang Chi ◽  
Matthew Ho Wai Chin ◽  
Sisi Fan ◽  
Margarita Kopniczky ◽  
...  

Biopolymers, such as poly-3-hydroxy-butyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore more efficient P(3HB) production processes are required. In this study, we describe the model-guided design and experimental characterization of several engineered P(3HB) producing operons. In particular, we describe the characterization of a novel hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. The hybrid phaCAB operon represents a step towards the more efficient production of P(3HB), which has an array of applications from 3D printing to tissue engineering.


2020 ◽  
Vol 27 ◽  
Author(s):  
Mohammad Sadegh Hashemzadeh ◽  
Mozafar Mohammadi ◽  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Mojtaba Sharti ◽  
Ali Choopani ◽  
...  

: Escherichia coli has been most widely used for production of the recombinant proteins. Over-expression of the recombinant proteins is the mainspring of the inclusion bodies formation. The refolding of these proteins into bioactive forms is cumbersome and partly time-consuming. In the present study, we reviewed and discussed most issues regarding the recovery of "classical inclusion bodies" by focusing on our previous experiences. Performing proper methods of expression, solubilization, refolding and final purification of these proteins, would make it possible to recover higher amounts of pro-teins into the native form with appropriate conformation. Generally, providing mild conditions and proper refolding buffers, would lead to recover more than 40% of inclusion bodies into bioactive and native conformation.


Sign in / Sign up

Export Citation Format

Share Document