Frenkel-Kontorova model of propagating ledges on austenite-martensite phase boundaries

Author(s):  
P. Leninpandian ◽  
Srikanth Vedantam
Author(s):  
G. M. Michal

Several TEM investigations have attempted to correlate the structural characteristics to the unusual shape memory effect in NiTi, the consensus being the essence of the memory effect is ostensible manifest in the structure of NiTi transforming martensitic- ally from a B2 ordered lattice to a low temperature monoclinic phase. Commensurate with the low symmetry of the martensite phase, many variants may form from the B2 lattice explaining the very complex transformed microstructure. The microstructure may also be complicated by the enhanced formation of oxide or hydride phases and precipitation of intermetallic compounds by electron beam exposure. Variants are typically found in selfaccommodation groups with members of a group internally twinned and the twins themselves are often observed to be internally twinned. Often the most salient feature of a group of variants is their close clustering around a given orientation. Analysis of such orientation relationships may be a key to determining the nature of the reaction path that gives the transformation its apparently perfect reversibility.


Author(s):  
Z.M. Wang ◽  
J.P. Zhang

High resolution electron microscopy reveals that antiphase domain boundaries in β-Ni3Nb have a hexagonal unit cell with lattice parameters ah=aβ and ch=bβ, where aβ and bβ are of the orthogonal β matrix. (See Figure 1.) Some of these boundaries can creep “upstairs” leaving an incoherent area, as shown in region P. When the stepped boundaries meet each other, they do not lose their own character. Our consideration in this work is to estimate the influnce of the natural misfit δ{(ab-aβ)/aβ≠0}. Defining the displacement field at the boundary as a phase modulation Φ(x), following the Frenkel-Kontorova model [2], we consider the boundary area to be made up of a two unit chain, the upper portion of which can move and the lower portion of the β matrix type, assumed to be fixed. (See the schematic pattern in Figure 2(a)).


Author(s):  
Y. Kouh Simpson ◽  
C. B. Carter

The structure of spinel/alumina phase boundaries has recently been studied using the selected- area diffraction technique. It has been found that there exist several dominant topotactic relationships; of these, the two most common situations are when the {111} plane of spinel is parallel to either the (0001) plane or the {1120} plane of alumina. In both of these cases, it has been found that there is often a small rotation from exact topotaxy (typically 0° to 2° but with larger rotations possible) which partially eliminates the need for misfit dislocations. This rotation is a special phenomenon that may be unique to non-metallic interfaces such as phase boundaries in ceramics. In this report, a special spinel/alumina interface in which a large rotation from the exact topotaxy exists between the (111) plane of spinel and the (OOOl) plane of alumina is discussed.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Alloy Digest ◽  
2007 ◽  
Vol 56 (2) ◽  

Abstract MITTAL DI-FORM T700 and HF80Y100T are low-carbon steels with a manganese and silicon composition. Dual-phase (DP) steels are one of the important advanced high-strength steel (AHSS) products developed for the automotive industry. Their microstructure typically consists of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The DI-FORM grades exhibit low yield-to-tensile strengths, and the numeric designation in the name corresponds to the tensile strength. This datasheet provides information on microstructure and tensile properties as well as deformation and fatigue. It also includes information on forming. Filing Code: SA-561. Producer or source: Mittal Steel USA Flat Products.


Alloy Digest ◽  
2007 ◽  
Vol 56 (1) ◽  

Abstract MITTAL DI-FORM T590 and T600 are low-carbon dual-phase steels containing manganese and silicon. Dual-phase (DP) steels are important advanced high-strength steel (AHSS) products developed for the automotive industry. Their microstructure typically consists of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The DI-FORM grades exhibit low yield-to-tensile strength ratios. The numeric designation in the grade name corresponds to the tensile strength in MPa. This datasheet provides information on microstructure, tensile properties, and bend strength as well as fatigue. It also includes information on forming. Filing Code: SA-558. Producer or source: Mittal Steel USA Flat Products.


Sign in / Sign up

Export Citation Format

Share Document