Simulation of rainfall–runoff processes in karst catchment considering the impact of karst depression based on the tank model

2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Xianmeng Meng ◽  
Meng Huang ◽  
Dengfeng Liu ◽  
Maosheng Yin
2019 ◽  
Vol 27 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Naser Mohammadzadeh ◽  
Bahman Jabbarian Amiri ◽  
Leila Eslami Endergoli ◽  
Shirin Karimi

Abstract With the aim of assessing the impact of climate change on surface water resources, a conceptual rainfall-runoff model (the tank model) was coupled with LARS-WG as a weather generator model. The downscaled daily rainfall, temperature, and evaporation from LARS-WG under various IPCC climate change scenarios were used to simulate the runoff through the calibrated Tank model. A catchment (4648 ha) located in the southern basin of the Caspian Sea was chosen for this research study. The results showed that this model has a reasonable predictive capability in simulating minimum and maximum temperatures at a level of 99%, rainfall at a level of 93%, and radiation at a level of 97% under various scenarios in agreement with the observed data. Moreover, the results of the rainfall-runoff model indicated an increase in the flow rate of about 108% under the A1B scenario, 101% under the A2 scenario, and 93% under the B1 scenario over the 30-year time period of the discharge prediction.


2013 ◽  
Vol 777 ◽  
pp. 430-433
Author(s):  
Xing Po Liu

In order to cope with urban flooding, water scarcity and rainfall-runoff pollution comprehensively, a conceptual tank model of urban storm water system is proposed. Tank model is a multi-layer, multi-objective model, so design of urban storm water system is more complex than that of urban storm sewer system. Some principles of design of urban storm water system are discussed, such as Low Impact Development, Smart storm water management, and so on.


2013 ◽  
Vol 13 (3) ◽  
pp. 583-596 ◽  
Author(s):  
M. Coustau ◽  
S. Ricci ◽  
V. Borrell-Estupina ◽  
C. Bouvier ◽  
O. Thual

Abstract. Mediterranean catchments in southern France are threatened by potentially devastating fast floods which are difficult to anticipate. In order to improve the skill of rainfall-runoff models in predicting such flash floods, hydrologists use data assimilation techniques to provide real-time updates of the model using observational data. This approach seeks to reduce the uncertainties present in different components of the hydrological model (forcing, parameters or state variables) in order to minimize the error in simulated discharges. This article presents a data assimilation procedure, the best linear unbiased estimator (BLUE), used with the goal of improving the peak discharge predictions generated by an event-based hydrological model Soil Conservation Service lag and route (SCS-LR). For a given prediction date, selected model inputs are corrected by assimilating discharge data observed at the basin outlet. This study is conducted on the Lez Mediterranean basin in southern France. The key objectives of this article are (i) to select the parameter(s) which allow for the most efficient and reliable correction of the simulated discharges, (ii) to demonstrate the impact of the correction of the initial condition upon simulated discharges, and (iii) to identify and understand conditions in which this technique fails to improve the forecast skill. The correction of the initial moisture deficit of the soil reservoir proves to be the most efficient control parameter for adjusting the peak discharge. Using data assimilation, this correction leads to an average of 12% improvement in the flood peak magnitude forecast in 75% of cases. The investigation of the other 25% of cases points out a number of precautions for the appropriate use of this data assimilation procedure.


2021 ◽  
Vol 14 (2) ◽  
pp. 1143
Author(s):  
Karla Campagnolo ◽  
Sofia Melo Vasconcellos ◽  
Vinicius Santanna Castiglio ◽  
Marina Refatti Fagundes ◽  
Masato Kobiyama

A representação do processo precipitação-vazão por meio de modelos hidrológicos conceituais visa quantificar o volume escoado em uma bacia como consequência de uma determinada precipitação. Aliados a eles, os índices têm sido uma ferramenta útil para quantificar eventos extremos, como o Soil Moisture Index (TMI) que foi formulado a partir do modelo hidrológico Tank Model. Desta forma, o objetivo deste trabalho foi aplicar o Tank Model para a bacia do rio Perdizes, em Cambará do Sul (RS), e avaliar o desempenho do TMI para prever a ocorrência de cheias, limiar este utilizado para o fechamento da Trilha do rio do Boi, no Parque Nacional de Aparados da Serra (PNAS). Os dados utilizados na simulação foram obtidos pelas estações meteorológica e fluviométrica instaladas na bacia. Após a calibração e validação de três séries históricas no Tank Model, os valores obtidos do TMI foram comparados com os dias que a Trilha foi fechada, a partir de altos níveis registrados no rio Perdizes. O TMI demonstrou que o nível utilizado para fechar a Trilha do rio do Boi correspondeu a cheias em 72% das vezes. Portanto, o TMI mostrou bom desempenho ao indicar a ocorrência de cheias na área estudada, sendo uma ferramenta útil para a tomada de decisões na gestão do PNAS.  Application of the Tank Model as a Management Tool in the Perdizes River Basin - Cambará do Sul/RS.ABSTRACTThe representation of the rainfall-runoff process by means of conceptual hydrological models aims to quantify the volume drained in a basin as result of a specific precipitation. Allied to them, the indices have been a useful tool to quantify extreme events, such as the Tank Moisture Index (TMI) which was formulated from the Tank Model. Thus, the objective of this work was to apply the Tank Model to the Perdizes river basin, in Cambará do Sul (RS), and to evaluate the performance of the TMI to predict the occurrence of floods, the threshold used for the closure of the Rio do Boi trail, in the Aparados da Serra National Park (PNAS). The data used in the simulation were obtained at the meteorological and fluviometric stations installed in the basin. After the calibration and validation of three historical series in the Tank Model, the values obtained in the TMI were compared with the days when the Trail was closed, from high levels recorded in the Perdizes river. The average TMI values demonstrated that the level used to close the Rio do Boi Trail corresponded to floods 72% of the time, and the median, 75%. Therefore, the TMI showed good performance in indicating the occurrence of floods in the study area, being a useful tool for decision making in the PNAS management.Keywords: Tank Moisture Index, trail closure, Aparados da Serra National Park.


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3357
Author(s):  
Jinkui Wu ◽  
Hongyuan Li ◽  
Jiaxin Zhou ◽  
Shuya Tai ◽  
Xueliang Wang

Quantifying the impact of climate change on hydrologic features is essential for the scientific planning, management and sustainable use of water resources in Northwest China. Based on hydrometeorological data and glacier inventory data, the Spatial Processes in Hydrology (SPHY) model was used to simulate the changes of hydrologic processes in the Upper Shule River (USR) from 1971 to 2020, and variations of runoff and runoff components were quantitatively analyzed using the simulations and observations. The results showed that the glacier area has decreased by 21.8% with a reduction rate of 2.06 km2/a. Significant increasing trends in rainfall runoff, glacier runoff (GR) and baseflow indicate there has been a consistent increase in total runoff due to increasing rainfall and glacier melting. The baseflow has made the largest contribution to total runoff, followed by GR, rainfall runoff and snow runoff, with mean annual contributions of 38%, 28%, 18% and 16%, respectively. The annual contribution of glacier and snow runoff to the total runoff shows a decreasing trend with decreasing glacier area and increasing temperature. Any increase of total runoff in the future will depend on an increase of rainfall, which will exacerbate the impact of drought and flood disasters.


2016 ◽  
Vol 48 (6) ◽  
pp. 1757-1772 ◽  
Author(s):  
Dua K. S. Y. Klaas ◽  
Monzur Alam Imteaz ◽  
Arul Arulrajah

Abstract To assess the effect of three grid cell properties (size, mean slope of the surface and distance between centre of grid and observation well) on groundwater models' performances, a tropical karst catchment characterized by monsoonal season in Rote Island, Indonesia was selected. Here, MODFLOW was used to develop models with five different spatial discretization schemes: 10 × 10 m, 20 × 20 m, 30 × 30 m, 40 × 40 m and 50 × 50 m. Using parameter estimation method, hydraulic conductivity and specific yield values over a selection of pilot points were estimated. The trends of the performances were calculated at each observation well in order to recommend the most appropriate location for observation well placement in terms of topographical characteristic. It is confirmed that the deterioration of model performance is mainly controlled by the increase of distance between well and centre of the cell, and the mean slope of the surface. Results reveal that model performance increases substantially for areas of low slope (<3%) and medium slope (3–10%) for a smaller grid cell size. Therefore, to improve model performance, it is recommended that the observations wells are placed in areas of low and medium slopes.


2015 ◽  
Vol 19 (1) ◽  
pp. 379-387 ◽  
Author(s):  
I. Andrés-Doménech ◽  
R. García-Bartual ◽  
A. Montanari ◽  
J. B. Marco

Abstract. Measuring the impact of climate change on flood frequency is a complex and controversial task. Identifying hydrological changes is difficult given the factors, other than climate variability, which lead to significant variations in runoff series. The catchment filtering role is often overlooked and thus may hinder the correct identification of climate variability signatures on hydrological processes. Does climate variability necessarily imply hydrological variability? This research aims to analytically derive the flood frequency distribution based on realistic hypotheses about the rainfall process and the rainfall–runoff transformation. The annual maximum peak flow probability distribution is analytically derived to quantify the filtering effect of the rainfall–runoff process on climate change. A sensitivity analysis is performed according to typical semi-arid Mediterranean climatic and hydrological conditions, assuming a simple but common scheme for the rainfall–runoff transformation in small-size ungauged catchments, i.e. the CN-SCS model. Variability in annual maximum peak flows and its statistical significance are analysed when changes in the climatic input are introduced. Results show that depending on changes in the annual number of rainfall events, the catchment filtering role is particularly significant, especially when the event rainfall volume distribution is not strongly skewed. Results largely depend on the return period: for large return periods, peak flow variability is significantly affected by the climatic input, while for lower return periods, infiltration processes smooth out the impact of climate change.


2021 ◽  
Author(s):  
Sebastian Drost ◽  
Fabian Netzel ◽  
Andreas Wytzisk-Ahrens ◽  
Christoph Mudersbach

<p>The application of Deep Learning methods for modelling rainfall-runoff have reached great advances in the last years. Especially, long short-term memory (LSTM) networks have gained enhanced attention for time-series prediction. The architecture of this special kind of recurrent neural network is optimized for learning long-term dependencies from large time-series datasets. Thus, different studies proved the applicability of LSTM networks for rainfall-runoff predictions and showed, that they are capable of outperforming other types of neural networks (Hu et al., 2018).</p><p>Understanding the impact of land-cover changes on rainfall-runoff dynamics is an important task. Such a hydrological modelling problem typically is solved with process-based models by varying model-parameters related to land-cover-incidents at different points in time. Kratzert et al. (2019) proposed an adaption of the standard LSTM architecture, called Entity-Aware-LSTM (EA-LSTM), which can take static catchment attributes as input features to overcome the regional modelling problem and provides a promising approach for similar use cases. Hence, our contribution aims to analyse the suitability of EA-LSTM for assessing the effect of land-cover changes.</p><p>In different experimental setups, we train standard LSTM and EA-LSTM networks for multiple small subbasins, that are associated to the Wupper region in Germany. Gridded daily precipitation data from the REGNIE dataset (Rauthe et al., 2013), provided by the German Weather Service (DWD), is used as model input to predict the daily discharge for each subbasin. For training the EA-LSTM we use land cover information from the European CORINE Land Cover (CLC) inventory as static input features. The CLC inventory includes Europe-wide timeseries of land cover in 44 classes as well as land cover changes for different time periods (Büttner, 2014). The percentage proportion of each land cover class within a subbasin serves as static input features. To evaluate the impact of land cover data on rainfall-runoff prediction, we compare the results of the EA-LSTM with those of the standard LSTM considering different statistical measures as well as the Nash–Sutcliffe efficiency (NSE).</p><p>In addition, we test the ability of the EA-LSTM to outperform physical process-based models. For this purpose, we utilize existing and calibrated hydrological models within the Wupper basin to simulate discharge for each subbasin. Finally, performance metrics of the calibrated model are used as benchmarks for assessing the performance of the EA-LSTM model.</p><p><strong>References</strong></p><p>Büttner, G. (2014). CORINE Land Cover and Land Cover Change Products. In: Manakos & M. Braun (Hrsg.), Land Use and Land Cover Mapping in Europe (Bd. 18, S. 55–74). Springer Netherlands. https://doi.org/10.1007/978-94-007-7969-3_5</p><p>Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11), 1543. https://doi.org/10.3390/w10111543</p><p>Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 23(12), 5089–5110. https://doi.org/10.5194/hess-23-5089-2019</p><p>Rauthe, M, Steiner, H, Riediger, U, Mazurkiewicz, A &Gratzki, A (2013): A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteorologische Zeitschrift, Vol 22, No 3, 235–256. https://doi.org/10.1127/0941-2948/2013/0436</p>


Water SA ◽  
2018 ◽  
Vol 34 (5) ◽  
pp. 529 ◽  
Author(s):  
Gil Mahe ◽  
Sabine Girard ◽  
Mark New ◽  
Jean-Emmanuel Paturel ◽  
Agnes Cres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document