scholarly journals Optimal design of the Sermo Fault deformation monitoring network using sensitivity criteria based on geological information

2021 ◽  
Vol 14 (20) ◽  
Author(s):  
Yulaikhah ◽  
Subagyo Pramumijoyo ◽  
Nurrohmat Widjajanti ◽  
Asmoro Widagdo

AbstractThe Sermo Reservoir is located in Kulon Progo District, Special Region of Yogyakarta, Indonesia. It plays a vital role in providing water to its surrounding communities. According to the geological structure of this area, a fault exists near the Ngrancah River and passes through the reservoir’s inundation. At present, a network consists of 15 Global Navigation Satellite System (GNSS) monitoring stations spread around the Sermo Fault to monitor its deformation. However, this network was designed without consideration of geological parameters. This study aimed to design an optimal deformation monitoring network of the Sermo Fault by taking into account geological information and evaluate the existing network, specifically, the optimal distance for the station to the fault plane. Geological surveys were carried out to obtain information regarding the type and characteristics of the fault. This information was used as one of the parameters in the optimization design, using sensitivity criteria, of a network to monitor for the optimal distance between the observation station and fault. Using the strike-slip fault model, the optimal distance obtained was from 4.5 to 8.5 km from the fault plane. The existing stations of the Sermo Fault deformation monitoring network are about 0.07–3.3 km away from the fault. Therefore, the network is insufficiently sensitive and needs to be developed by adding stations that are more than 4.5 km away from the fault. This study designed an alternative network by rearranging the stations’ location to obtain a better configuration and sensitivity.

Author(s):  
R. R. Gabdullin ◽  
O. N. Biryukova ◽  
R. A. Akhmedov

The analysis of geological and geophysical materials in order to study the peculiarities of the geological structure of the Vikulov Formation within the Vodorazdel license area was carried out. The presented factual material makes it possible to characterize the geological structure of the investigated area more informatively and for interpreting of seismic materials. The analysis of geological information (GIS and test results) confirms the approved water–oil contact (WOC) level in the investigated section of the deposit, which makes it possible to recalculate its reserves.


2021 ◽  
Vol 10 (4) ◽  
pp. 201
Author(s):  
Liang Kong ◽  
Zhengwei He ◽  
Zhongsheng Chen ◽  
Mingliang Luo ◽  
Zhong Du ◽  
...  

To measure and present urban size urban spatial forms, in solving problems in the rapid urbanization of China, urban territorial scope identification is essential. Although current commonly used methods can quantitatively identify urban territorial scopes to a certain extent, the results are displayed using a continuous and closed curve with medium- and low-resolution images. This makes the acquisition and interpretation of data challenging. In this paper, by extracting discretely distributed urban settlements, road intersections in OpenStreetMap (OSM), electronic maps, and urban expansion curve based on fractal thoughts have been used to present urban territorial scope and spatial form. Guangzhou, Chengdu, Nanjing, and Shijiazhuang cities were chosen as the identification targets. The results showed that the distance threshold corresponding to the principal curvature point of the urban expansion curve plays a vital role in the extraction of urban settlements. Moreover, from the analysis, the optimal distance thresholds of urban settlements in Guangzhou, Chengdu, Nanjing, and Shijiazhuang were 132 m, 204 m, 157 m, and 124 m, respectively, and the corresponding areas of urban territorial scopes were 1099.36 km2, 1076.78 km2, 803.07 km2, and 353.62 km2, respectively. These metrics are consistent with those for the built-up areas.


2021 ◽  
Author(s):  
Kyubo Noh ◽  
◽  
Carlos Torres-Verdín ◽  
David Pardo ◽  
◽  
...  

We develop a Deep Learning (DL) inversion method for the interpretation of 2.5-dimensional (2.5D) borehole resistivity measurements that requires negligible online computational costs. The method is successfully verified with the inversion of triaxial LWD resistivity measurements acquired across faulted and anisotropic formations. Our DL inversion workflow employs four independent DL architectures. The first one identifies the type of geological structure among several predefined types. Subsequently, the second, third, and fourth architectures estimate the corresponding spatial resistivity distributions that are parameterized (1) without the crossings of bed boundaries or fault plane, (2) with the crossing of a bed boundary but without the crossing of a fault plane, and (3) with the crossing of the fault plane, respectively. Each DL architecture employs convolutional layers and is trained with synthetic data obtained from an accurate high-order, mesh-adaptive finite-element forward numerical simulator. Numerical results confirm the importance of using multi-component resistivity measurements -specifically cross-coupling resistivity components- for the successful reconstruction of 2.5D resistivity distributions adjacent to the well trajectory. The feasibility and effectiveness of the developed inversion workflow is assessed with two synthetic examples inspired by actual field measurements. Results confirm that the proposed DL method successfully reconstructs 2.5D resistivity distributions, location and dip angles of bed boundaries, and the location of the fault plane, and is therefore reliable for real-time well geosteering applications.


2020 ◽  
Vol 10 (18) ◽  
pp. 6445 ◽  
Author(s):  
Theodoros Gatsios ◽  
Francesca Cigna ◽  
Deodato Tapete ◽  
Vassilis Sakkas ◽  
Kyriaki Pavlou ◽  
...  

The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is therefore crucial to characterize any activity at the volcano that could impact the local population. This study aims to detect surface deformation in the whole Methana peninsula based on a long stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR) processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method, involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula. Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a complex displacement pattern across the volcano edifice, including local-scale land surface processes. In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend. Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of deformation processes and their temporal evolution over the last years for Methana, thus providing initial information to feed into the volcano baseline hazard assessment and monitoring system.


2014 ◽  
Vol 548-549 ◽  
pp. 475-480
Author(s):  
Zhong Qiang Sun

Firstly, according to the physical makeup and the structure characteristics of landslide mass in one area, there are 6 kinds of typical hazard factors are put forward, such as mining under the ground, landslide characteristics, geological structure, and height of wave, grading angle, and rain intensity. Application of fuzzy mathematics theory, the fuzzy mathematics evaluation model on the slope stability of many factors is established. Evaluate criterion of continuous variable and discrete variable are determined based on the analysis of landslide characteristics and spatial-temporal distribution, then slope stability is evaluated, and the evaluation results are in accord with the practical situation. Finally, based on above evaluation results, Landslides Monitoring Network in mining area is established, and monitoring results proved that the landslides in the mining area are stability at present.


2011 ◽  
Vol 55-57 ◽  
pp. 698-703
Author(s):  
Da Bing Huang ◽  
Zhi Qiang Yang ◽  
Zhen Shi

The purpose of this paper is to determine the unstable points of debris-blocking dam deformation network and to lay the foundation for later accurate monitoring and data processing, for the reason that the affection of earth pressure and water-level-fluctuation lead to increased instability to debris-blocking dam. The author signed one horizontal displacement deformation monitoring network, measured two groups data by changing some point’s horizontal displacement with man, judged the point’s stability of the network by the method of mean gap and obtained the deformation model, and analysis the model sensitivity. The results is that the deformation network stability meet the design requirements through application the method in Fengjie Debris-blocking dam which blocked the stones debris for Shirushan tunnel, the actual displacement amount had been proven similar as the result with the method; It is concluded that this method have some practical value in deformation monitoring because it can construct the approximate model by direct observation data, which is smaller rely on other information.


Sign in / Sign up

Export Citation Format

Share Document