Prediction of Micro-scale Forces in Dry Grinding Process Through a FEM—ML Hybrid Approach

Author(s):  
Flavia Lerra ◽  
Antonio Candido ◽  
Erica Liverani ◽  
Alessandro Fortunato
2010 ◽  
Vol 97-101 ◽  
pp. 2356-2360 ◽  
Author(s):  
Shu Dong Xiu ◽  
Zhi Jie Geng

In point grinding process, the contact area of point grinding is much smaller than that of conventional cylindrical grinding under same conditions, so the grinding power and heat to measure is lower and the cooling condition is improved obviously. For green manufacturing, the point grinding process has the significance to reduce the consumption of grinding fluid and improve ground surface integrity and greenness. This study analyzes the geometric configuration of the contact area between wheel and workpiece in point grinding process, establishes the geometric and mathematic models of the contact area, and investigates the relations between the grinding parameters and the grinding power by the simulations. The MQL and semi-dry point grinding experiments are performed on the ground surface integrity. These investigations show that the MQL and semi-dry grinding can be achieved in point grinding process under less contact area and higher jet pressure condition for the high greenness demand.


Clay Minerals ◽  
1988 ◽  
Vol 23 (4) ◽  
pp. 399-410 ◽  
Author(s):  
J. L. Pérez-Rodríguez ◽  
L. Madrid Sánchez del Villar ◽  
P.J. Sánchez-Soto

AbstractDry grinding of pyrophyllite (Hillsboro, USA) has been studied by X-ray diffraction (XRD), specific surface area measurements (BET) and scanning electron microscopy (SEM). At the beginning of the grinding process, some effects such as delamination, gliding and folding of the layers, and decrease in particle size were detected by SEM and XRD, resulting in a large increase in specific surface area, up to a maximum of ∼60 m2·g−1. Marked changes in the structure take place between 30 and 32 mins grinding. Longer grinding times increase the degree of disorder and SEM and specific surface area data suggest that aggregation occurs. XRD results indicate that some residual order persists in the degraded structure.


2021 ◽  
Author(s):  
Sanjay Giri ◽  
Amin Shakya ◽  
Mohamed Nabi ◽  
Suleyman Naqshband ◽  
Toshiki Iwasaki ◽  
...  

<p>Evolution and transition of bedforms in lowland rivers are micro-scale morphological processes that influence river management decisions. This work builds upon our past efforts that include physics-based modelling, physical experiments and the machine learning (ML) approach to predict bedform features, states as well as associated flow resistance. We revisit our past works and efforts on developing and applying numerical models, from simple to sophisticated, starting with a multi-scale shallow-water model with a dual-grid technique. The model incorporates an adjustment of the local bed shear stress by a slope effect and an additional term that influences bedform feature. Furthermore, we review our work on a vertical two-dimensional model with a free surface flow condition. We explore the effects of different sediment transport approaches such as equilibrium transport with bed slope correction and a non-equilibrium transport with pick-up and deposition. We revisit a sophisticated three-dimensional Large Eddy Simulation (LES) model with an improved sediment transport approach that includes sliding, rolling, and jumping based on a Lagrangian framework. Finally, we discuss about bedform states and transition that are studied using laboratory experiments as well as a theory-guided data science approach that assures logical reasoning to analyze physical phenomena with large amounts of data. A theoretical evaluation of parameters that influence bedform development is carried out, followed by classification of bedform type by using a neural network model.</p><p>In second part, we focus on practical application, and discuss about large-scale numerical models that are being applied in river engineering and management practices. Such models are found to have noticeable inaccuracies and uncertainties associated with various physical and non-physical reasons. A key physical problem of these large-scale numerical models is related to the prediction of evolution and transition of micro-scale bedforms, and associated flow resistance. The evolution and transition of bedforms during rising and falling stages of a flood wave have a noticeable impact on morphology and flow levels in low-land alluvial rivers. The interaction between flow and micro-scale bedforms cannot be considered in a physics-based manner in large-scale numerical models due to the incompatibility between the resolution of the models and the scale of morphological changes. The dynamics of bedforms and the corresponding changes in flow resistance are not captured. As a way forward, we propse a hydrid approach that includes application of the CFD models, mentioned above, to generate a large amount of data in complement with field and laboratory observations, analysis of their reliability based on which developing a ML model. The CFD models can replicate bedform evolution and transition processes as well as associated flow resistance in physics-based manner under steady and varying flow conditions. The hybrid approach of using CFD and ML models can offer a better prediction of flow resistance that can be coupled with large-scale numerical models to improve their performance. The reseach is in progress.</p>


2013 ◽  
Vol 334-335 ◽  
pp. 369-374
Author(s):  
G.A. Kozhina ◽  
A.N. Ermakov ◽  
V.B. Fetisov ◽  
A.V. Fetisov ◽  
K. Y. Shunyaev ◽  
...  

Electrochemical behaviour of mechanoactivated β-MnO2 powders has been studied by the method of cyclic voltammetry with a carbon-paste electroactive electrode. Mechanical activation was carried out by dry grinding in an AGO-2 planetary ball mill. It was found that the grinding process results in a mechanochemical effect in the surface layer of the oxide particles: Mn (IV) cations are reduced to Mn (III). Voltammetry test detects that mechanical activation of β-MnO2 leads to a new state, which is characteristic for the γ-modification of manganese dioxide (β-MnO2 γ-MnO2).


2010 ◽  
Vol 431-432 ◽  
pp. 470-473
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

Due to point contact cause, the point grinding process have the lower grinding power and heat to measure and the better cooling conditions. For green manufacturing, the point grinding process has the significance to reduce the consumption of grinding fluid and improve the ground surface integrity and the process greenness. This study analyzes the geometric configuration of the contact area between the wheel and the workpiece in point grinding process, establishes the geometric and mathematic models of the contact area, and investigates the relations between the grinding parameters. The dry point grinding experiments are performed on the ground surface integrity. These investigations show that the dry grinding can be achieved in point grinding process under less depth of cut and the higher grinding speed for the high machining greenness demand.


2021 ◽  
pp. 105582
Author(s):  
Yanhe Nie ◽  
Jianghao Chen ◽  
Qiang Wang ◽  
Canyu Zhang ◽  
Changliang Shi ◽  
...  

2014 ◽  
Vol 14 (3) ◽  
pp. 45-52
Author(s):  
R. Wójcik

Abstract The paper presents a study of the process of grinding stainless steels with different carbon contents. Verified the size and scope of the energy which is introduced in the surface layers for different types of abrasive grains and binders. The influence of parameters in plunge grinding process was considered in studies. The energy ratio was used for this purpose, which was calculated by multiplying energy and time of grinding wheel contact with the workpiece. To investigate influence of different carbon content on the level of energy density generated during grinding process special parameter Bp have been evaluated. The grinding tests were conducted in dry grinding technique.


Author(s):  
Pil-Ho Lee ◽  
Jung Soo Nam ◽  
Jung Sub Kim ◽  
Sang Won Lee

In this paper, the micro-scale grinding processes of titanium alloy (Ti-6Al-4V) using electro-hydro-dynamic (EHD) spray with nanofluid and compressed air are experimentally investigated. In the experiments, specific micro-grinding forces and surface roughness of the ground workpiece are quantitatively analyzed as a function of nanofluid’s concentration and size of nanoparticles. In addition, the ground surface quality is qualitatively investigated by comparing the optical microscopic images. The experimental results show the effectiveness of EHD spraying with nanofluid and compressed air for reducing the specific micro-grinding forces and enhancing ground surface quality.


Sign in / Sign up

Export Citation Format

Share Document