Unawareness of memory impairment and behavioral abnormalities in patients with Alzheimer’s disease: Relation to professional health care burden

2011 ◽  
Vol 15 (5) ◽  
pp. 356-360 ◽  
Author(s):  
M. J. Al-Aloucy ◽  
R. Cotteret ◽  
P. Thomas ◽  
M. Volteau ◽  
I. Benmaou ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Lulin Nie ◽  
Junxia Xia ◽  
Honglian Li ◽  
Zaijun Zhang ◽  
Ying Yang ◽  
...  

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, so far, there are no effective measures to prevent and cure this deadly condition. Ginsenoside Rg1 (Rg1) was shown to improve behavioral abnormalities in AD; however, the potential mechanisms remain unclear. In this study, we pretreated 7-month-old 3xTg-AD mice for 6 weeks with Rg1 and evaluated the effects of Rg1 on the behaviors and the protein expression of hippocampal tissues. The behavioral tests showed that Rg1 could improve the memory impairment and ameliorate the depression-like behaviors of 3xTg-AD mice. Proteomic results revealed a total of 28 differentially expressed hippocampal proteins between Rg1-treated and nontreated 3xTg-AD mice. Among these proteins, complexin-2 (CPLX2), synapsin-2 (SYN2), and synaptosomal-associated protein 25 (SNP25) were significantly downregulated in the hippocampus of 3xTg-AD mice compared with the WT mice, and the treatment of Rg1 modulated the expression of CPLX2 and SNP25 in the hippocampus of 3xTg-AD mice. The expression of CPLX2, SYN2, and SNP25 was further validated by Western blot analysis. Taken together, we concluded that Rg1 could be a potential candidate drug to improve the behavioral deficits in AD via modulating the expression of the proteins (i.e., CPLX2, SYN2, and SNP25).


2010 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Sridhar Krishnamurti

Alzheimer's disease is neurodegenerative disorder which affects a growing number of older adults every year. With an understanding of auditory dysfunction in Alzheimer's disease, the speech-language pathologist working in the health care setting can provide better service to these individuals. The pathophysiology of the disease process in Alzheimer's disease increases the likelihood of specific types of auditory deficits as opposed to others. This article will discuss the auditory deficits in Alzheimer's disease, their implications, and the value of clinical protocols for individuals with this disease.


2020 ◽  
Vol 21 (7) ◽  
pp. 628-646
Author(s):  
Gülcem Altinoglu ◽  
Terin Adali

Alzheimer’s disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer’s disease and their implications in therapy is discussed.


Author(s):  
Wen-Dai Bao ◽  
Pei Pang ◽  
Xiao-Ting Zhou ◽  
Fan Hu ◽  
Wan Xiong ◽  
...  

AbstractIron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


2011 ◽  
Vol 7 ◽  
pp. S165-S166
Author(s):  
David P. Salmon ◽  
Eliezer Masliah ◽  
Douglas Galasko ◽  
Guerry Peavy ◽  
Lawrence Hansen ◽  
...  

Cortex ◽  
1996 ◽  
Vol 32 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Lynette J. Tippett ◽  
Murray Grossman ◽  
Martha J. Farah

2011 ◽  
Vol 7 ◽  
pp. S734-S734
Author(s):  
Kimiko Domoto-Reilly ◽  
Daisy Sapolsky ◽  
Michael Brickhouse ◽  
Mark Hollenbeck ◽  
Brad Dickerson

Sign in / Sign up

Export Citation Format

Share Document