Flavin-Containing Monooxygenase mRNA Levels are Up-Regulated in ALS Brain Areas in SOD1-Mutant Mice

2010 ◽  
Vol 20 (2) ◽  
pp. 150-158 ◽  
Author(s):  
Stella Gagliardi ◽  
Paolo Ogliari ◽  
Annalisa Davin ◽  
Manuel Corato ◽  
Emanuela Cova ◽  
...  
1993 ◽  
Vol 4 (2) ◽  
pp. 89-96 ◽  
Author(s):  
H. Chen ◽  
F. Cabon ◽  
P. Sun ◽  
E. Parmantier ◽  
P. Dupouey ◽  
...  

2020 ◽  
Vol 45 (11) ◽  
pp. 1931-1941 ◽  
Author(s):  
Adele Romano ◽  
Maria Vittoria Micioni Di Bonaventura ◽  
Cristina Anna Gallelli ◽  
Justyna Barbara Koczwara ◽  
Dorien Smeets ◽  
...  

Abstract Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell (“frustration stress”). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg−1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


2009 ◽  
Vol 10 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Chiara Pizzasegola ◽  
Ilaria Caron ◽  
Cristina Daleno ◽  
Anna Ronchi ◽  
Claudio Minoia ◽  
...  

Autophagy ◽  
2008 ◽  
Vol 4 (3) ◽  
pp. 290-293 ◽  
Author(s):  
Liang Li ◽  
Xiaojie Zhang ◽  
Weidong Le
Keyword(s):  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 756-756 ◽  
Author(s):  
Raymond Liang ◽  
Genís Campreciós ◽  
Carolina L. Bigarella ◽  
Saghi Ghaffari

β-thalassemia arises as a result of mutations in the β-globin gene. As a consequence erythropoiesis, the process that insures the daily generation of billions of red blood cells (RBCs), becomes disrupted. Ineffective erythropoiesis is a major contributor to the β-thalassemic anemia and is partially due to aberrant apoptosis during late stages of erythroid maturation. Despite the importance of apoptosis, the underlying molecular mechanisms regulating this process in β-thalassemia erythroblasts are not fully elucidated. One potential mechanism involves the transcription factor Foxo3, which under specific contexts can act as a positive regulator of apoptosis, but is also an essential transcriptional regulator of terminal erythroblast maturation. Foxo3 has a range of outputs that it can execute from sustaining cellular integrity by mitigating oxidative stress to inducing apoptosis under conditions of overwhelming stress. Given these functions, we sought to determine if Foxo3 played a role in maintaining RBC maturation in β-thalassemic mice. To address this, we used Hbbth3/+ (th3/+) mice that display a phenotype similar to β-thalassemia intermedia, and produced double mutant Foxo3-/-/Th3/+ mice. The th3/+ mice display a mild erythroblast apoptotic phenotype. We hypothesized that loss of Foxo3 may exacerbate the β-thalassemic phenotype. On the contrary, we found that loss of Foxo3 in a β-thalassemic background improved RBC numbers and hemoglobin concentration (by 1g/dl, n=10 mice) in double mutant mice compared to th3/+ mice. Furthermore, double mutant mice had a statistically significant lower frequency of apoptosis (2 fold less) during bone marrow erythroblast maturation as measured by flow cytometry analysis of annexin V-binding and 7AAD staining in distinct erythroblast stages resolved by TER119, CD44 and cell size (n=3 mice per genotype). We predicted that high levels of oxidative stress may prematurely activate FOXO3 during erythroblast maturation in β-thalassemic mice. In turn, activated FOXO3 may potentially promote apoptosis in these cells. To evaluate this, we examined FOXO3 levels by qRT-PCR and immunofluorescence in FACS sorted populations of erythroblasts (TER119+,CD44,FSC) or erythroid progenitors (TER119-,c-KIT+,CD71HI) acquired from bone marrow of at least 3 mice per genotype. Our data show increased mRNA levels of Foxo3 in early erythroblasts, corresponding to increased FOXO3 protein expression in erythroid progenitors from β-thalassemic mice relative to wild-type mice. We also examined the activation status of p53, as it is also a major regulator of apoptosis that can be triggered by oxidative stress. Nuclear p53 levels were greater in β-thalassemic as compared to wild-type erythroid progenitors based on immunofluorescence analysis of sorted cells from bone marrow of 3 mice per genotype. These results suggest a higher level of active p53 in β-thalassemic erythroid progenitors. Our results provide evidence that FOXO3, a factor normally critical for erythroblast maturation, may cooperate with aberrantly active p53 to induce apoptosis in β-thalassemic erythroblasts. In support of this, downstream p53 targets including Gadd45a and p21 that are also Foxo3 targets were significantly upregulated in β-thalassemic erythroblasts relative to wild-type erythroblasts as determined by qRT-PCR of cDNA produced from 3 mice per genotype. To more closely examine the mechanism of decreased apoptosis in double mutant Foxo3-/-/Th3/+ erythroblasts, we compared the expression of multiple genes involved in apoptosis by qRT-PCR of sorted erythroblast populations from at least 3 mice per genotype. We found multiple pro-apoptotic genes including, Cycs, Tnfsf10, Puma, and Bim expressed at significantly lower levels at various erythroblast stages in double mutant compared to β-thalassemic erythroblasts. Together, our data suggests Foxo3 becomes inappropriately and prematurely activated in erythroid progenitors and early erythroblasts in the context of β-thalassemia and cooperates with p53 to promote apoptosis. These findings raise the possibility that cooperation of Foxo3 and p53 in β-thalassemic erythroblasts might contribute to the ineffective erythropoiesis of β-thalassemic mice. They also suggest the possibility that as a homeostatic maintaining factor, Foxo3 behaves differently in the context of disease. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 63 (2) ◽  
pp. 123-138 ◽  
Author(s):  
Ulas Ozkurede ◽  
Rishabh Kala ◽  
Cameron Johnson ◽  
Ziqian Shen ◽  
Richard A Miller ◽  
...  

It has been hypothesized that transcriptional changes associated with lower mTORC1 activity in mice with reduced levels of growth hormone and insulin-like growth factor 1 are responsible for the longer healthy lifespan of these mutant mice. Cell lines and tissues from these mice show alterations in the levels of many proteins that cannot be explained by corresponding changes in mRNAs. Such post-transcriptional modulation may be the result of preferential mRNA translation by the cap-independent translation of mRNA bearing the N6-methyl-adenosine (m6A) modification. The long-lived endocrine mutants – Snell dwarf, growth hormone receptor deletion and pregnancy-associated plasma protein-A knockout – all show increases in the N6-adenosine-methyltransferases (METTL3/14) that catalyze 6-methylation of adenosine (m6A) in the 5′ UTR region of select mRNAs. In addition, these mice have elevated levels of YTH domain-containing protein 1 (YTHDF1), which recognizes m6A and promotes translation by a cap-independent mechanism. Consistently, multiple proteins that can be translated by the cap-independent mechanism are found to increase in these mice, including DNA repair and mitochondrial stress response proteins, without changes in corresponding mRNA levels. Lastly, a drug that augments cap-independent translation by inhibition of cap-dependent pathways (4EGI-1) was found to elevate levels of the same set of proteins and able to render cells resistant to several forms of in vitro stress. Augmented translation by cap-independent pathways facilitated by m6A modifications may contribute to the stress resistance and increased healthy longevity of mice with diminished GH and IGF-1 signals.


2018 ◽  
Vol 46 (6) ◽  
pp. 2358-2372 ◽  
Author(s):  
Binbin Deng ◽  
Wenjing Lv ◽  
Weisong Duan ◽  
Yakun Liu ◽  
Zhongyao Li ◽  
...  

Background: Myelination, degeneration and regeneration are implicated in crucial responses to injury in the peripheral nervous system. Considering the progression of amyotrophic lateral sclerosis (ALS), we used the superoxide dismutase 1 (SOD1)-G93A transgenic mouse model of ALS to investigate the effects of mutant SOD1 on the peripheral nerves. Methods: Changes in peripheral nerve morphology were analyzed in SOD1 mutant mice at various stages of the disease by toluidine blue staining and electron microscopy (EM). Schwann cell proliferation and recruitment of inflammatory factors were detected by immunofluorescence staining and quantitative reverse transcription PCR and were compared between SOD1 mutant mice and control mice. Furthermore, western blotting (WB) and TUNEL staining were used to investigate axonal damage and Schwann cell survival in the sciatic nerves of mice in both groups. Results: An analysis of the peripheral nervous system in SOD1-G93A mice revealed the following novel features: (i) Schwann cells and axons in mutant mice underwent changes that were similar to those seen in the control mice during the early development of peripheral nerves. (ii) The peripheral nerves of SOD1-G93A mice developed progressive neuropathy, which presented as defects in axons and myelin, leading to difficulty in walking and reduced locomotor capacity at a late stage of the disease. (iii) Macrophages were recruited and accumulated, and nerve injury and a deficit in the blood-nerve barrier were observed. (iv) Proliferation and the inflammatory micro-environment were inhibited, which impaired the regeneration and remyelination of axons after crush injury in the SOD1-G93A mice. Conclusions: The mutant human SOD1 protein induced axonal and myelin degeneration during the progression of ALS and participated in axon remyelination and regeneration in response to injury.


2018 ◽  
Vol 92 ◽  
pp. 12-16 ◽  
Author(s):  
Rachit Bakshi ◽  
Yuehang Xu ◽  
Kaly A. Mueller ◽  
Xiqun Chen ◽  
Eric Granucci ◽  
...  

1996 ◽  
Vol 16 (4) ◽  
pp. 557-565 ◽  
Author(s):  
Jari Honkaniemi ◽  
Frank R. Sharp

Ischemia induces immediate-early genes (IEGs) in brain. Since prolonged expression of some IEGs may precede neuronal death, some researchers have suggested that these IEGs mediate neuronal death. We therefore examined the effect of 5 and 10 min of global ischemia on the expression of the IEGs NGFI-A, NGFI-B, NGFI-C, egr-2, egr-3, and Nurr1 in gerbil brain. All of the IEGs were induced after 30 min of reperfusion in the hippocampus. Most of them were induced in several other regions as well, including cortex, hypothalamus, thalamus, and amygdala. The acute IEG induction decreased in most brain areas by 2–6 h. However, at 24 h following 5 min of ischemia NGFI-A continued to be expressed in the CA1 region and dentate gyrus. In the dentate gyrus, NGFI-C continued to be expressed for 24 h and egr-3 for as long as 72 h. In other brain areas, all of the IEGs returned to control levels by 72 h except in CA1, where most messenger RNA (mRNA) levels were decreased; this decrease correlated with marked neuronal loss. The persistent expression of NGFI-A in CA1 neurons destined to die and the persistent expression of NGFI-A, NGFI-C, and egr-3 genes in dentate granule cell neurons that survive may indicate that some transcription factors modulate cell death whereas others support cell survival when expressed for prolonged periods. The protein products of several transcription factors, including c- fos, are known to downregulate their own expression. The persistent expression of NGFI-A in the CA1 neurons destined to die could therefore be due to ischemia-induced transcriptional activation caused by, e.g., increased intracellular calcium levels plus a lack of negative feedback caused by the blockade of the translation of NGFI-A mRNA into protein.


Sign in / Sign up

Export Citation Format

Share Document