Study on angular variation of cosmic ray secondary particles with atmospheric depth using CORSIKA code

2016 ◽  
Vol 91 (4) ◽  
pp. 351-358
Author(s):  
P. Patgiri ◽  
D. Kalita ◽  
K. Boruah
1968 ◽  
Vol 46 (5) ◽  
pp. 343-358 ◽  
Author(s):  
B. Judek

Interaction mean free paths of relativistic secondary particles emitted from interactions of heavy primary cosmic-ray nuclei in emulsions were measured. The results show that among the Be, Li, He, and singly charged secondary nuclei there are particles present which interact with a cross section several times higher than the expected geometrical value. The stars produced by these particles have the characteristics of ordinary nuclear interactions. There appears to be no interpretation of these observations in terms of any known particle phenomena.


2018 ◽  
Vol 184 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Zi-Yi Yang ◽  
Rong-Jiun Sheu

Abstract Galactic cosmic-ray-induced secondary particles in the atmosphere constitute an important source of radiation exposure to airline crews and passengers. In this study, a systematic dose assessment was conducted for 11 popular flights from Taiwan, with an emphasis on the effects of flight route variation and assumption. The case studies covered a broad range of commercial flights departing from Taipei, from a domestic flight of <1 h to a long-haul international flight of more than 14 h. For each route under study, information on 100 actual flight routes was retrieved from flight tracking data collected from June to September 2017, and the information was analyzed using a self-developed program called the ‘NTHU Flight Dose Calculator’. The resulting distribution of route doses provided not only the mean value and associated standard deviation but also information on the characteristics of aviation dose assessment and management. Furthermore, compared with actual flight routes, the dose differences introduced by great-circle approximation were evaluated, and the effects of solar activity on the dose assessment of these flights were reported.


2019 ◽  
Vol 210 ◽  
pp. 02009
Author(s):  
Jean-Noël Capdevielle ◽  
Zbigniew Plebaniak ◽  
Barbara Szabelska ◽  
Jacek Szabelski

The model HDPM of CORSIKA has been updated and developed on the base of the recent measurements by ALICE, CMS, TOTEM, LHCb, LHCf... The new model, GHOST, involving a four-source production reproduces correctly the pseudo-rapidity distributions of charged secondaries and has been tested with the data in the mid and forward rapidity region, especially in the complex case of TOTEM, and also with the recent measurements of CMS, up to $ \sqrt s = 13\,{\rm{TeV}} $ (9.0 1016 eV in laboratory system). Special calculations have been devoted to the semi-inclusive data playing an important role in the cosmic ray simulation (fluctuations in earliest collisions, individual cascades measured at high altitude with high energy emulsion chambers). Taking into account the violation of KNO scaling, the negative binomial distribution (NegBin-expressed in terms of scaled elements) $ z = {n \mathord{\left/ {\vphantom {n {\bar {n}}}} \right. \kern-\nulldelimiterspace} {\bar {n}}} $ (n is the number of charged secondaries) has been used pointing out a possible asymptotic behaviour of total charged multiplicities at primary energies exceeding 40 TeV (8.5 1017 eV). Thus, larger reduction of the energies devoted to the leading cluster and very large multiplicity of secondary particles could suggest for EAS generated by primary protons a larger production of muons and a shower maximum at higher altitude.


2019 ◽  
Vol 216 ◽  
pp. 02004 ◽  
Author(s):  
Fabrizia Canfora

The mass composition of ultra-high-energy cosmic rays plays a key role in the understanding of the origins ofthese rare particles. A composition-sensitive observable is the atmospheric depth at which the air shower reaches the maximum number of particles (Xmax). The Auger Engineering Radio Array (AERA) detects the radio emission inthe 30-80 MHz frequency band from extensive air showers with energies larger than 1017 eV. It consists of more than 150 autonomous radio stations covering an area of about 17 km2. From the distribution of signals measured by the antennas, it is possible to estimate Xmax. In this contribution three independent methods for the estimation of Xmax will be presented.


1983 ◽  
Vol 94 (1) ◽  
pp. 211-222 ◽  
Author(s):  
J. H. Crane ◽  
M. H. Israel ◽  
J. Klarmann ◽  
J. F. Ormes ◽  
R. J. Protheroe
Keyword(s):  

2016 ◽  
Vol 13 (123) ◽  
pp. 20160459 ◽  
Author(s):  
Dimitra Atri

Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator , found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed.


1968 ◽  
Vol 46 (10) ◽  
pp. S722-S726 ◽  
Author(s):  
K. Imaeda

A frequency function of multiplicity and dispersion of the log tan θ plot of the secondary particles of cosmic-ray jets is derived and compared with the experimental results. On the basis of this distribution law together with the "isobar-fireball" model, the characteristic features of cosmic-ray jets are discussed. The predictions and validity of this model for jets of energy 1013 to 1016 eV are examined in the light of experiments, and a possible change in the characteristic feature of jets around 1016 eV energy is suggested.


1968 ◽  
Vol 46 (10) ◽  
pp. S1020-S1022 ◽  
Author(s):  
B. S. Chow ◽  
K. K. Wu ◽  
N. Simpson ◽  
V. D. Hopper

Analysis of emulsions exposed to cosmic radiation at atmospheric depths between 10 and 40 g/cm2 at λ = 47 °S geomagnetic on 11 December 1964 shows that there is little variation with altitude in proton flux in this altitude range. However, the total star production rate increases with increasing atmospheric depth but with a smaller slope than that measured by Geiger counter. Preliminary results obtained from exposures made in November 1965 at 8.5, 28.4, and 58 g/cm2 show that the values of proton flux at 8.5 and 58 g/cm2 are lower than that at 28.4 g/cm2. A study of the rate of production of stars at λ = 43° S and 9 g/cm2 over the period April 1962 to September 1966 shows some correlation with the ground-based neutron monitor count rate. The proton flux at the top of the atmosphere at latitude 47° S is estimated as 900 ± 100 protons/m2 sr s.


1968 ◽  
Vol 46 (10) ◽  
pp. S598-S600
Author(s):  
E. Tamai ◽  
M. Tsubomatsu ◽  
K. Ogura

Nuclear emulsions were exposed at 2.3 g cm−2 atmospheric depth over Fort Churchill in 1965. These emulsions have been examined for the tracks of multiply-charged [Formula: see text] nuclei, with emphasis being paid particularly to those particles that stopped in the emulsions. Differential energy spectra of α particles and [Formula: see text], [Formula: see text]and [Formula: see text] nuclei were obtained in the energy interval 60–550 MeV/nucleon. They represent experimental results during the period when solar modulation effects were at a minimum. The fluxes of α particles and L, M, and H nuclei for energy intervals of 60–170, 100–400, 100–525, and 140–550 MeV/nucleon were found to be 20.9 ± 1.2, 2.4 ± 0.4, 4.8 ± 0.6, and 2.5 ± 0.4 particles m−2 sr−1 s−1, respectively. The results also show that the L/M and H/M ratios at the top of the atmosphere were 0.56 ± 0.16 and 0.34 ± 0.13 respectively, in the energy range from 140 to 350 MeV/nucleon. These values are appreciably greater than those observed at higher energies.


Sign in / Sign up

Export Citation Format

Share Document