Ionic conductivities and dielectric analysis of (C6H20N3)BiI6·H2O compound

Author(s):  
Nizar Elfaleh ◽  
Sahel Karoui ◽  
Slaheddine Kamoun
Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


2019 ◽  
Author(s):  
Ajay Gautam ◽  
Marcel Sadowski ◽  
Nils Prinz ◽  
Henrik Eickhoff ◽  
Nicolo Minafra ◽  
...  

<p>Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I), a site-disorder between the anionsS<sup>2–</sup>and X<sup>–</sup>has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such disorder in Li<sub>6</sub>PS<sub>5</sub>Br can be engineered <i>via</i>the synthesis method. By comparing fast cooling (<i>i.e. </i>quenching) to more slowly cooled samples, we find that anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with <i>ab-initio</i>molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within one minute of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced <i>via</i>quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.</p>


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1734
Author(s):  
Erick Franieck ◽  
Martin Fleischmann ◽  
Ole Hölck ◽  
Larysa Kutuzova ◽  
Andreas Kandelbauer

We report on the cure characterization, based on inline monitoring of the dielectric parameters, of a commercially available epoxy phenol resin molding compound with a high glass transition temperature (>195 °C), which is suitable for the direct packaging of electronic components. The resin was cured under isothermal temperatures close to general process conditions (165–185 °C). The material conversion was determined by measuring the ion viscosity. The change of the ion viscosity as a function of time and temperature was used to characterize the cross-linking behavior, following two separate approaches (model based and isoconversional). The determined kinetic parameters are in good agreement with those reported in the literature for EMCs and lead to accurate cure predictions under process-near conditions. Furthermore, the kinetic models based on dielectric analysis (DEA) were compared with standard offline differential scanning calorimetry (DSC) models, which were based on dynamic measurements. Many of the determined kinetic parameters had similar values for the different approaches. Major deviations were found for the parameters linked to the end of the reaction where vitrification phenomena occur under process-related conditions. The glass transition temperature of the inline molded parts was determined via thermomechanical analysis (TMA) to confirm the vitrification effect. The similarities and differences between the resulting kinetics models of the two different measurement techniques are presented and it is shown how dielectric analysis can be of high relevance for the characterization of the curing reaction under conditions close to series production.


2020 ◽  
Author(s):  
Muskaan Tuteja ◽  
Sujata Sanghi ◽  
Ashish Agarwal ◽  
Manisha Yadav ◽  
Tanvi Bhasin

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shenghan Gao ◽  
Thibault Broux ◽  
Susumu Fujii ◽  
Cédric Tassel ◽  
Kentaro Yamamoto ◽  
...  

AbstractMost solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s2) in oxides (e.g., SrVO2H, BaTi(O,H)3) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H–) together with chalcogenide (Ch2–) anions to construct a family of antiperovskites with soft anionic sublattices. The M3HCh antiperovskites (M = Li, Na) adopt the ideal cubic structure except orthorhombic Na3HS, despite the large variation in sizes of M and Ch. This unconventional robustness of cubic phase mainly originates from the large size-flexibility of the H– anion. Theoretical and experimental studies reveal low migration barriers for Li+/Na+ transport and high ionic conductivity, possibly promoted by a soft phonon mode associated with the rotational motion of HM6 octahedra in their cubic forms. Aliovalent substitution to create vacancies has further enhanced ionic conductivities of this series of antiperovskites, resulting in Na2.9H(Se0.9I0.1) achieving a high conductivity of ~1 × 10–4 S/cm (100 °C).


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.


Sign in / Sign up

Export Citation Format

Share Document