Isolation of Nanocrystalline Cellulose: A Technological Route for Valorizing Recycled Tetra Pak Aseptic Multilayered Food Packaging Wastes

2016 ◽  
Vol 8 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Chérif Ibrahima Khalil Diop ◽  
Jean-Michel Lavoie
Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4278
Author(s):  
Fitriani Fitriani ◽  
Sri Aprilia ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Hazwani Suhaimi ◽  
...  

Among the main bio-based polymer for food packaging materials, whey protein isolate (WPI) is one of the biopolymers that have excellent film-forming properties and are environmentally friendly. This study was performed to analyse the effect of various concentrations of bio-based nanocrystalline cellulose (NCC) extracted from pineapple crown leaf (PCL) on the properties of whey protein isolate (WPI) films using the solution casting technique. Six WPI films were fabricated with different loadings of NCC from 0 to 10 % w/v. The resulting films were characterised based on their mechanical, physical, chemical, and thermal properties. The results show that NCC loadings increased the thickness of the resulting films. The transparency of the films decreased at higher NCC loadings. The moisture content and moisture absorption of the films decreased with the presence of the NCC, being lower at higher NCC loadings. The water solubility of the films decreased from 92.2% for the pure WPI to 65.5% for the one containing 10 % w/v of NCC. The tensile strength of the films peaked at 7% NCC loading with the value of 5.1 MPa. Conversely, the trend of the elongation at break data was the opposite of the tensile strength. Moreover, the addition of NCC produced a slight effect of NCC in FTIR spectra of the WPI films using principal component analysis. NCC loading enhanced the thermal stability of the WPI films, as shown by an increase in the glass transition temperature at higher NCC loadings. Moreover, the morphology of the films turned rougher and more heterogeneous with small particle aggregates in the presence of the NCC. Overall, the addition of NCC enhanced the water barrier and mechanical properties of the WPI films by incorporating the PCL-based NCC as the filler.


2016 ◽  
Vol 47 (6) ◽  
pp. 1024-1037 ◽  
Author(s):  
Ahmed H Hassanin ◽  
Zeki Candan ◽  
Cenk Demirkir ◽  
Tamer Hamouda

Due to the significant and harmful effect of the global warming on our communities, health, and climate, the usage of thermal insulation material in building is must to decrease the energy consumption and to improve energy efficiency. On the other hand, the utilization of waste and biomass resources for developing new bio-based composite materials is attracting much attention for the environmental and socioeconomics. Therefore, in this study, thermal insulation bio-based composite panels from Tetra Pak® waste and wool fiber waste with different ratios were manufactured. Likewise, other sandwich bio-based composite panels were manufactured using Tetra Pak waste as a core material with glass woven fabric and jute wove fabric as skin materials. Thermal conductivity and thermal resistance results showed a significant improvement on thermal insulation properties of the developed biocomposite panels compared to the control samples made of plain Tetra Pak®.


Author(s):  
Roya Koshani ◽  
Jingbin Zhang ◽  
Theo G. M. van de Ven ◽  
Xiaonan Lu ◽  
Yixiang Wang

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5313
Author(s):  
Amina Hachaichi ◽  
Benalia Kouini ◽  
Lau Kia Kian ◽  
Mohammad Asim ◽  
Hassan Fouad ◽  
...  

Date palm fiber (Phoenix dactylifera L.) is a natural biopolymer rich in lignocellulosic components. Its high cellulose content lends them to the extraction of tiny particles like microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). These cellulose-derived small size particles can be used as an alternative biomaterial in wide fields of application due to their renewability and sustainability. In the present work, NCC (A) and NCC (B) were isolated from date palm MCC at 60 min and 90 min hydrolysis times, respectively. The isolated NCC product was subjected to characterization to study their properties differences. With the hydrolysis treatment, the yields of produced NCC could be attained at between 22% and 25%. The infrared-ray functional analysis also revealed the isolated NCC possessed a highly exposed cellulose compartment with minimized lignoresidues of lignin and hemicellulose. From morphology evaluation, the nanoparticles’ size was decreased gradually from NCC (A) (7.51 nm width, 139.91 nm length) to NCC (B) (4.34 nm width, 111.51 nm length) as a result of fragmentation into cellulose fibrils. The crystallinity index was found increasing from NCC (A) to NCC (B). With 90 min hydrolysis time, NCC (B) showed the highest crystallinity index of 71% due to its great cellulose rigidity. For thermal analysis, NCC (B) also exhibited stable heat resistance, in associating with its highly crystalline cellulose structure. In conclusion, the NCC isolated from date palm MCC would be a promising biomaterial for various applications such as biomedical and food packaging applications.


2016 ◽  
Vol 12 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Nooshin Noshirvani ◽  
Babak Ghanbarzadeh ◽  
Hadi Fasihi ◽  
Hadi Almasi

Abstract The goal of this work was to compare the barrier, mechanical, and thermal properties of two types of starch–polyvinyl alcohol (PVA) nanocomposites. Sodium montmorillonite (MMT) and nanocrystalline cellulose were chosen as nanoreinforcements. X-ray diffraction (XRD) test showed well-distributed MMT in the starch–PVA matrix, possibly implying that the clay nanolayers formed an exfoliated structure. The moisture sorption, solubility and water vapor permeability (WVP) studies revealed that the addition of MMT and nanocrystalline cellulose reduced the moisture affinity of starch–PVA biocomposite. At the level of 7 % MMT, the nanocomposite films showed the highest ultimate tensile strength (UTS) (4.93 MPa) and the lowest strain to break (SB) (57.65 %). The differential scanning calorimetry (DSC) results showed an improvement in thermal properties for the starch–PVA–MMT nanocomposites, but not for the starch–PVA–NCC nanocomposites. Results of this study demonstrated that the use of MMT in the fabrication of starch–PVA nanocomposites is more favorable than that of nanocrystalline cellulose to produce a desirable biodegradable film for food packaging applications.


2021 ◽  
Author(s):  
Thilini Dissanayake ◽  
Tizazu Mekonnen ◽  
Senaka Ranadheera ◽  
Nandika Bandara ◽  
Boon Peng Chang

2015 ◽  
Vol 46 (4) ◽  
pp. 182-196 ◽  
Author(s):  
Luke (Lei) Zhu ◽  
Victoria L. Brescoll ◽  
George E. Newman ◽  
Eric Luis Uhlmann

Abstract. The present studies examine how culturally held stereotypes about gender (that women eat more healthfully than men) implicitly influence food preferences. In Study 1, priming masculinity led both male and female participants to prefer unhealthy foods, while priming femininity led both male and female participants to prefer healthy foods. Study 2 extended these effects to gendered food packaging. When the packaging and healthiness of the food were gender schema congruent (i.e., feminine packaging for a healthy food, masculine packaging for an unhealthy food) both male and female participants rated the product as more attractive, said that they would be more likely to purchase it, and even rated it as tasting better compared to when the product was stereotype incongruent. In Study 3, packaging that explicitly appealed to gender stereotypes (“The muffin for real men”) reversed the schema congruity effect, but only among participants who scored high in psychological reactance.


Sign in / Sign up

Export Citation Format

Share Document